Data Analytics and Visualization Environment for xAPI and the Total Learning Architecture

 DAVE Learning Analytics Algorithms8 November 2019

This work was supported by the U.S. Advanced Distributed Learning (ADL) Initiative (HQ0034-18-C-0040). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the ADL Initiative or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes.

Data Analytics and Visualization Environment for xAPI and the Total Learning Architecture: DAVE Learning Analytics Algorithms

Yet Analytics, Inc.
201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA
November 8, 2019

Introduction

This report introduces a language for defining the functionality of learning analytics algorithms in terms of Operations, Primitives and Algorithms which will be used to define Algorithms corresponding to an initial set of learning analytics questions. Additional questions may be added to this set in the future. This document will be updated to include additional Operations, Primitives, and Algorithms as they are defined by the Author(s) of this report or by members of the Open Source Community. Updates may also address refinement of existing definitions, thus this document is subject to continuous change but those which are significant will be documented within the DAVE change log. Any changes made to this report or to the DAVE github repository should follow the conventions established in the Contributing Wiki Page. The formal definitions in this document are optimized for understandability and conceptual presentation meaning they are not presented as, or intended to be, the most computationally efficient definition possible. The formal definitions are intended to serve as referential documentation of methodologies and programmatic strategies for handling the processing of xAPI data.

The structure of this document is as follows:

1. An Introduction to Z notation and its usage in this document
2. A formal specification for $x A P I$ written in Z
3. Terminology: Operations, Primitives and Algorithms
4. What is an Operation
5. What is a Primitive
6. What is an Algorithm
7. Foundational Operations
8. Common Primitives
9. Example Algorithm
(a) Init
(b) Relevant?
(c) Accept?
(d) Step
(e) Result

1 Z Notation Introduction

The following subsections provide a high level overview of select properties of Z Notation based on "The Z Notation: A Reference Manual" by J. M. Spivey. A copy of this reference manual can be found at dave/docs/z/Z-notation reference manual.pdf. In many cases, definitions will be pulled directly from the reference manual and when this occurs, the relevant page number(s) will be included. For a proper introduction with tutorial examples, see chapter 1, "Tutorial Introduction" from pages 1 to 23 . For the $L a T e X$ symbols used to write Z, see the reference document found at dave/docs/z/zed-csp-documentation.pdf.

1.1 Decorations

The following decorations are used throughout this document and are taken directly from the reference manual. For a complete summary of the Syntax of Z, see chapter 6, Syntax Summary, starting on page 142.

\prime	[indicates final state of an operation]
$?$	[indicates input to an operation]
$!$	[indicates output of an operation]
Δ	[indicates the schema results in a change to the state space]
Ξ	[indicates the schema does not result in a change to the state space]
$>$	[indicates output of the left schema is input to the right schema]

1.2 Types

Objects have a type which characterizes them and distinguish them from other kinds of objects.

- Basic types are sets of objects which have no internal structure of interest meaning the concrete definition of the members is not relevant, only their shared type.
- Free types are used to describe (potentially nested and/or recursive) sets of objects. In the most simple case, a free type can be an enumeration of constants.

Within the xAPI Formal Specification, both of these types are used to describe the Inverse Functional Identifier property.

- Introduction of the basic types $M B O X, M B O X _S H A 1 S U M, O P E N I D$ and $A C C O U N T$ allows the specification to talk about these constraints within the xAPI specification without defining their exact structure
- The free type $I F I$ is defined as one of the above basic types meaning an object of type $I F I$ is of type $M B O X$ or $M B O X _S H A 1 S U M$ or OPENID or ACCOUNT.

Types can be composed together to form composite types and thus complex objects.

$$
\begin{aligned}
& {\left[M B O X, M B O X _S H A 1 S U M, O P E N I D, A C C O U N T\right]} \\
& I F I::=M B O X\left|M B O X _S H A 1 S U M\right| O P E N I D \mid A C C O U N T
\end{aligned}
$$

Within the xAPI Formal Specification, $I F I$ is used within the definition of an agent as presented in the schema Agent.

$$
\left[\begin{array}{l}
\text { Agent } \\
\text { agent }: \text { AGENT } \\
\text { objectType }: \text { OBJECTTYPE } \\
\text { name }: \mathbb{F}_{1} \# 1 \\
\text { ifi }: \text { IFI }
\end{array}\right] \begin{aligned}
& \text { objectType }=\text { Agent } \\
& \text { agent }=\{\text { ifi }\} \cup \mathbb{P}\{\text { name, objectType }\}
\end{aligned}
$$

See section 2.2 , pages 28 to 34 , and chapter 3 , pages 42 to 85 , for more information about Schemas and the Z Language.

1.3 Sets

A collection of elements that all share a type. A set is characterized solely by which objects are members and which are not. Both the order and repetition of objects are ignored. Sets are written in one of two ways:

- listing their elements
- by a property which is characteristic of the elements of the set.
such that the following law from page 55 holds for some object y

$$
y \in\left\{x_{1}, \ldots, x_{n}\right\} \Longleftrightarrow y=x_{1} \vee \ldots \vee y=x_{n}
$$

1.4 Ordered Pairs

Two objects (x, y) where x is paired with y. An n-tuple is the pairing of n objects together such that equality between two n-tuple pairs is given by the law from page 55

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \Longleftrightarrow x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}
$$

When ordered pairs are used with respect to application (as seen on page 60)

$$
f x \Rightarrow f(x) \Longleftrightarrow(x, y) \in f
$$

which states that $f(x)$ is defined if and only if there is a unique value y which result from $f x$ Additionally, application associates to the left

$$
f x y \Rightarrow(f x) y \Rightarrow(f(x), y)
$$

meaning $f(x)$ results in a function which is then applied to y.

1.5 Sequences

A collection of elements where their ordering matters such that

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle \Rightarrow\left\{1 \mapsto a_{1}, \ldots, n \mapsto a_{n}\right\}
$$

as seen on page 115. Additionally, iseq is used to describe a sequence whose members are distinct.

1.6 Bags

A collection of elements where the number of times an element appears in the collection is meaningful.

$$
\llbracket a_{1}, \ldots, a_{n} \rrbracket \Rightarrow\left\{a_{1} \mapsto k_{1}, \ldots, k_{n} \mapsto k_{n}\right\}
$$

As described on page 124 , each element a_{i} appears k_{i} times in the list a_{1}, \ldots, a_{n} such that the number of occurrences of a_{i} within bag A is returned by

$$
\operatorname{count} A a_{i} \equiv A \# a_{i}
$$

1.7 Maps

This document introduces a named subcategory of sets, map of the free type $K V$, which are akin to sequences and bags. To enumerate the members of a map, $\left\langle\langle\ldots\rangle\right.$ is used but should not be confused with $d_{i}\left\langle\left\langle E_{i}[T]\right\rangle\right.$ within a Free Type definition. The distinction between the two usages is context dependent but in general, if $\langle\langle\ldots\rangle\rangle$ is used outside of a constructor declaration within a Free Type definition, it should be assumed to represent a map.

$$
K V::=\text { base } \mid \text { associate }\langle\langle K V \times X \times Y\rangle\rangle
$$

where
base
associate
[is a constant which is the empty $K V \Rightarrow\langle\rangle\rangle$] [is a constructor and is inferred to be an injection]

The full enumeration of all properties, constraints and functions specific to a map with type $K V$ will be defined elsewhere but associate can be understood to (in the most basic case) operate as follows.

$$
\operatorname{associate}\left(\text { base }, x_{i}, y_{i}\right)=\left\langle\left\langle\left(x_{i}, y_{i}\right)\right\rangle\right\rangle \Rightarrow\left\langle\left\langle x_{i} \mapsto y_{i}\right\rangle\right\rangle
$$

The enumeration of a map was chosen to be $\langle\langle\ldots\rangle$ as a map is a collection of injections such that if M is the result of associate(base, x_{i}, y_{i}) from above then

$$
\operatorname{atKey}\left(M, x_{i}\right)=y_{i} \Longleftrightarrow x_{i} \mapsto y_{i} \wedge\left(x_{i}, y_{i}\right) \in M
$$

1.8 Select Operations and Symbols

The follow are defined in Chapter 4 (The Mathematical Tool-kit) within the reference manual and are used extensively throughout this document. In many cases, the functions listed here will serve as Operations in the context of Primitives and Algorithms.

1.8.1 Functions

$$
\begin{aligned}
& \rightarrow \quad \text { [relate each } \mathrm{x} \in \mathrm{X} \text { to at most one } \mathrm{y} \in \mathrm{Y} \text {, page 105] } \\
& \rightarrow \quad \text { [relate each } \mathrm{x} \in \mathrm{X} \text { to exactly one } \mathrm{y} \in \mathrm{Y} \text {, page 105] } \\
& \rightarrow \quad \text { [map different elements of } \mathrm{x} \text { to different } \mathrm{y} \text {, page 105] } \\
& \mapsto \quad[\because \text { that are also } \rightarrow \text {, page 105] } \\
& \rightarrow \quad[X \rightarrow Y \text { where whole of } Y \text { is the range, page 105] } \\
& \rightarrow \quad[X \rightarrow Y \text { whole of } \mathrm{X} \text { as domain and whole of } \mathrm{Y} \text { as range, page 105] } \\
& \longrightarrow \quad[m a p \mathrm{x} \in \mathrm{X} \text { one-to-one with } \mathrm{y} \in \mathrm{Y} \text {, page 105] } \\
& X \mapsto Y==\{f: X \leftrightarrow Y \mid(\forall x: X ; y 1, y 2: Y \bullet \\
& \left.\left.\left(x \mapsto y_{1} \in f \wedge\left(x \mapsto y_{2}\right) \in f \Rightarrow y_{1}=y_{2}\right)\right)\right\} \\
& X \rightarrow Y==\{f: X \rightarrow Y \mid \operatorname{dom} f=X\} \\
& X \leftrightarrow Y==\left\{f: X \rightarrow Y \mid\left(\forall x_{1}, x_{2}: \operatorname{dom} f \bullet f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)\right\} \\
& X \mapsto Y==(X \mapsto Y) \cap(X \rightarrow Y) \\
& X \mapsto Y==\{f: X \nrightarrow Y \mid \operatorname{ran} f=Y\} \\
& X \rightarrow Y==(X \rightarrow Y) \cap(X \rightarrow Y) \\
& X \mapsto Y==(X \rightarrow Y) \cap(X \mapsto Y)
\end{aligned}
$$

1.8.2 Ordered Pairs, Maplet and Composition of Relations

1.8.3 Numeric

succ	[the next natural number, page 109]
..	[set of integers within a range, page 109]
$\#$	[number of members of a set, page 111]
\min	[smallest number in a set of numbers, page 113]
\max	[largest number in a set of numbers, page 113]

```
succ: \(\mathbb{N} \rightarrow \mathbb{N}\)
\({ }_{-\cdot \cdot}\) - \(: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{P} \mathbb{Z}\)
\(\forall n: \mathbb{N} \bullet \operatorname{succ}(n)=n+1\)
    foralla, \(b: \mathbb{Z} \bullet\)
        \(a . . b=\{k: \mathbb{Z} \mid a \leq k \leq b\}\)
\(\left[\begin{array}{l}{[X] \overline{\overline{\mathbb{F}} X \rightarrow \mathbb{N}}} \\ \quad \forall: S: \mathbb{F} X \bullet \\ \\ \quad \# S=(\mu n: \mathbb{N} \mid(\exists f: 1 . . n \rightarrow X \bullet \operatorname{ran} f=S))\end{array}\right.\)
```

$$
\begin{aligned}
& \min : \mathbb{P}_{1} \mathbb{Z} \rightarrow \mathbb{Z} \\
& \max : \mathbb{P}_{1} \mathbb{Z} \rightarrow \mathbb{Z} \\
& \min =\left\{S: \mathbb{P}_{1} \mathbb{Z} ; m: \mathbb{Z} \mid\right. \\
&m \in S \wedge(\forall n: S \bullet m \leq n) \bullet S \mapsto m\} \\
& \max =\left\{S: \mathbb{P}_{1} \mathbb{Z} ; m: \mathbb{Z} \mid\right. \\
&m \in S \wedge(\forall n: S \bullet m \geq n) \bullet S \mapsto m\}
\end{aligned}
$$

1.8.4 Sequences


```
\(=[X] \xlongequal{C}\)
    \(-1-: \mathbb{P N}_{1} \times \operatorname{seq} X \rightarrow \operatorname{seq} X\)
    \({ }_{-} \upharpoonright\) _ \(: \operatorname{seq} X \times \mathbb{P} X \rightarrow \operatorname{seq} X\)
    squash: \(\left(\mathbb{N}_{1} \rightarrow X\right) \rightarrow \operatorname{seq} X\)
    \(\forall U: \mathbb{P}_{1} ; s: \operatorname{seq} X \bullet\)
    \(U 1 s=\operatorname{squash}(U \triangleleft s)\)
    \(\forall s: \operatorname{seq} X ; V: \mathbb{P} X \bullet\)
    \(s \upharpoonright V=\operatorname{squash}(s \triangleright V)\)
    \(\forall f: \mathbb{N}_{1} \rightarrow X \bullet\)
    squash \(f=f \circ\left(\mu p: 1 . . \# f \mapsto \operatorname{dom} f \mid p \circ \operatorname{succ} \circ p^{\sim} \subseteq(-<-)\right)\)
\(=[X] \Longrightarrow\)
    ᄃ/: \(\operatorname{seq}(\operatorname{seq} X) \rightarrow \operatorname{seq} X\)
    \(\sim /\langle \rangle=\langle \rangle\)
    \(\forall s: \operatorname{seq} X \bullet \smile /\langle s\rangle=s\)
    \(\forall q, r: \operatorname{seq}(\operatorname{seq} X) \bullet\)
        \(\wedge /\left(q^{\wedge} r\right)=(\curvearrowleft / q)^{\wedge}(\curvearrowleft / r)\)
```

$=[I, X] \xlongequal{C}$
disjoint _: $\mathbb{P}(I \rightarrow \mathbb{P} X)$
- partition _ $:(I \rightarrow \mathbb{P} X) \leftrightarrow \mathbb{P} X$
$\forall S: I \rightarrow \mathbb{P} X ; T: \mathbb{P} X \bullet$
(disjoint $S \Longleftrightarrow$
$(\forall i, j: \operatorname{dom} S \mid i \neq j \bullet S(i) \cap S(j)=\emptyset)) \wedge$
(S partition $T \Longleftrightarrow$
disjoint $S \wedge \bigcup\{i: \operatorname{dom} S \bullet S(i)\}=T)$

1.8.5 Bags

count, \# [the number of times something appears in a bag, page 124]
[scaling across a bag, page 124]
\uplus
[union of two bags, sum of occurrences, page 126]
$\uplus \quad$ [bag difference, subtract occurrences or zero if negative, page 126] items [conversion from seq to bag, page 127]

```
\(=[X] \xlongequal{C}\)
    count : bag \(X \rightarrow(X \rightarrow \mathbb{N})\)
    _\#_ : \(\operatorname{bag} X \times X \rightarrow \mathbb{N}\)
    \(\mathcal{-}_{-}\)_ \(: \mathbb{N} \times \operatorname{bag} X \rightarrow \operatorname{bag} X\)
    \(\forall B: \operatorname{bag} X \bullet\)
        \(\operatorname{count} B=(\lambda x: X \bullet 0) \oplus B\)
    \(\forall x: X ; B: \operatorname{bag} x \bullet\)
        \(B \# x=\) count \(B x\)
    \(\forall n: \mathbb{N} ; B: \operatorname{bag} X ; x: X \bullet\)
        \((n \otimes B) \# x=n *(B \# x)\)
\(=[X] \bar{\Longrightarrow}\)
    \(-\uplus{ }_{-}, \Theta_{-}: \operatorname{bag} X \times \operatorname{bag} X \rightarrow \operatorname{bag} X\)
    \(\forall B, C: \operatorname{bag} X ; x: X \bullet\)
        \((B \uplus C) \# x=B \# x+C \# x \wedge\)
        \((B \cup C) \# x=\max \{B \# x-C \# x, 0\}\)
\(=[X]\)
    items : seq \(X \rightarrow \operatorname{bag} X\)
    \(\forall s: \operatorname{seq} X ; x\) : \(X \bullet\)
    \((i\) tems \(s) \# x=\#\{i: \operatorname{dom} s \mid s(i)=x\}\)
```


2 xAPI Formal Specification

The current formal specification only defines xAPI statements abstractly within the context of Z. A concrete definition for xAPI statements is outside the scope of this document.

2.1 Basic and Free Types

[MBOX, MBOX_SHA1SUM,OPENID, ACCOUNT]

- Basic Types for the abstract representation of the different forms of Inverse Functional Identifiers found in xAPI
[CHOICES, SCALE, SOU RCE, TARGET, STEPS]
- Basic Types for the abstract representation of the different forms of Interaction Components found in xAPI

IFI $::=M B O X\left|M B O X _S H A 1 S U M\right| O P E N I D \mid A C C O U N T$

- Free Type unique to Agents and Groups, The concrete definition of the listed Basic Types is outside the scope of this specification

OBJECTTYPE $::=$ Agent \mid Group \mid SubStatement \mid StatementRef \mid Activity

- A type which can be present in all activities as defined by the xAPI specification

INTERACTIONTYPE $::=$ true-false \mid choice \mid fill-in \mid long - fill-in \mid matching \mid
performance \mid sequencing \mid likert \mid numeric \mid other

- A type which represents the possible interactionTypes as defined within the xAPI specification
INTERACTIONCOMPONENT $::=C H O I C E S|S C A L E| S O U R C E|T A R G E T| S T E P S$
- A type which represents the possible interaction components as defined within the xAPI specification
- the concrete definition of the listed Basic Types is outside the scope of this specification
CONTEXTTYPES $::=$ parent \mid grouping \mid category \mid other
- A type which represents the possible context types as defined within the xAPI specification
[STATEMENT]
- Basic type for an xAPI data point
[AGENT, GROU P]
- Basic types for Agents and collections of Agents

2.2 Id Schema

$i d: \mathbb{F}_{1} \# 1$

- the schema $I d$ introduces the component $i d$ which is a non-empty, finite set of 1 value

2.3 Schemas for Agents, Groups and Actors

— Agent \qquad
agent: AGENT
objectType : OBJECTTYPE
name : $\mathbb{F}_{1} \# 1$
ifi: IFI
objectType $=$ Agent
agent $=\{$ ifi $\} \cup \mathbb{P}\{$ name, objectType $\}$

- The schema Agent introduces the component agent which is a set consisting of an ifi and optionally an objectType and/or name

```
Member
Agent
member : \(\mathbb{F}_{1}\)
member \(=\left\{a: A G E N T \mid \forall a_{n}: a_{i} . . a_{j} \bullet i \leq n \leq j \bullet a=a g e n t\right\}\)
```

- The schema Member introduces the component member which is a set of objects a, where for every a within $a_{0} . . a_{n}, a$ is an agent

```
_Group
    Member
    group : GROU P
    objectType : OBJECTTYPE
    ifi: IFI
    name : \(\mathbb{F}_{1} \# 1\)
    objectType \(=\) Group
    group \(=\{\) objectType, name, member \(\} \vee\{\) objectType, member \(\} \vee\)
    \(\{\) objectType, ifi \(\} \cup \mathbb{P}\{\) name, member \(\}\)
```

- The schema Group introduces the component group which is of type GROUP and is a set of either objectType and member with optionaly name or objectType and ifi with optionally name and/or member

```
Actor
    Agent
    Group
    actor : AGENT \vee GROUP
    actor = agent \vee group
```

- The schema Actor introduces the component actor which is either an agent or group

2.4 Verb Schema

Verb
Id
display, verb : \mathbb{F}_{1}
ver $b=\{i d$, display $\} \vee\{i d\}$

- The schema Verb introduces the component verb which is a set that consists of either $i d$ and the non-empty, finite set display or just $i d$

2.5 Object Schema

Extensions \qquad
extensions, extensionVal: \mathbb{F}_{1}
extensionId: $\mathbb{F}_{1} \# 1$
extensions $=\left\{e:(e x t e n s i o n I d\right.$, extensionVal $) \mid \forall e_{n}: e_{i} . . e_{j} \bullet i \leq n \leq j \bullet$
$\left(\right.$ extensionId $_{i}$, extensionVal $\left._{i}\right) \vee\left(\right.$ extensionId $_{i}$, extensionVal $\left._{j}\right) \wedge$
$\left(\right.$ extensionId $_{j}$, extensionVal $\left._{i}\right) \vee\left(\right.$ extensionId $_{j}$, extensionVal $\left._{j}\right) \wedge$ extensionId $d_{i} \neq{\left.\text { extension } I d_{j}\right\}}$

- The schema Extensions introduces the component extensions which is a non-empty, finite set that consists of ordered pairs of extensionId and extensionVal. Different extensionIds can have the same extensionVal but there can not be two identical extensionId values
- extensionId is a non-empty, finite set with one value
- extensionVal is a non-empty, finite set
_ InteractionActivity
interactionType : INTERACTIONTYPE
correctResponsePattern : seq ${ }_{1}$
interactionComponent : INTERACTIONCOMPONENT
interactionActivity $=\{$ interactionType, correctReponsePattern, interactionComponent $\} \vee$
\{interactionType, correctResponsePattern $\}$
- The schema InteractionActivity introduces the component interactionActivity which is a set of either interactionType and correctResponsePattern or interactionType and correctResponsePattern and interactionComponent

```
- Definition
    InteractionActivity
    Extensions
    definition, name, description : \(\mathbb{F}_{1}\)
    type, moreInfo : \(\mathbb{F}_{1} \# 1\)
    definition \(=\mathbb{P}_{1}\{\) name, description, type, moreInfo, extensions, , interactionActivity \(\}\)
```

- The schema Definition introduces the component definition which is the non-empty, finite power set of name, description, type, moreInfo and extensions

```
Object
```

\qquad

```
    Id
    Definition
    Agent
    Group
    Statement
    objectType \(A\), objectTypeS, objectTypeSub, objectType : OBJECTTYPE
    substatement : ST ATEMENT
    object: \(\mathbb{F}_{1}\)
    substatement \(=\) statement
    objectType \(A=\) Activity
    objectTypeS \(=\) StatementRef
    objectTypeSub \(=\) SubStatement
    objectType \(=\) objectType \(A \vee\) objectType \(S\)
    object \(=\{i d\} \vee\{\) id, objectType \(\} \vee\{\) id, objectType \(A\), definition \(\}\)
    \(\vee\{\) id, definition \(\} \vee\{\) agent \(\} \vee\{\) group \(\} \vee\{\) objectTypeSub, substatement \(\}\)
    \(\vee\{i d\), objectType \(A\}\)
```

- The schema Object introduces the component object which is a non-empty, finite set of either id, id and objectType, id and objectType A, id and objectType A and definition, agent, group, or substatement
- The schema Statement and the corresponding component statement will be defined later on in this specification

2.6 Result Schema

```
Score
```

\qquad

```
score : \(\mathbb{F}_{1}\)
scaled, \(\min , \max\), raw \(: \mathbb{Z}\)
scaled \(=\{n: \mathbb{Z} \mid-1.0 \leq n \leq 1.0\}\)
\(\min =n<\max\)
\(\max =n>\min\)
raw \(=\{n: \mathbb{Z} \mid \min \leq n \leq \max \}\)
score \(=\mathbb{P}_{1}\{\) scaled, raw, min, \(\max \}\)
```

- The schema Score introduces the component score which is the non-empty powerset of min, max, raw and scaled

Result \qquad
Score
Extensions
success, completion, response, duration : $\mathbb{F}_{1} \# 1$
result : \mathbb{F}_{1}
success $=\{$ true $\} \vee\{$ false $\}$
completion $=\{$ true $\} \vee\{$ false $\}$
result $=\mathbb{P}_{1}\{$ score, success, completion, response, duration, extensions $\}$

- The schema Result introduces the component result which is the nonempty power set of score, success, completion, response, duration and extensions

2.7 Context Schema

Instructor
Agent
Group
instructor : AGENT $\vee G R O U P$
instructor $=$ agent \vee group

- The schema Instructor introduces the component instructor which can be either an agent or a group

Team
Group
team : GROU P
team $=$ group

- The schema Team introduces the component team which is a group

```
Context
    Instructor
    Team
    Object
    Extensions
    registration, revision, platform, language \(: \mathbb{F}_{1} \# 1\)
    parent \(T\), grouping \(T\), categoryT, other \(T\) : CONTEXTTYPES
    contextActivities, statement : \(\mathbb{F}_{1}\)
    statement \(=\) object \(\backslash(\) id, objectType, agent, group, definition \()\)
    parentT \(=\) parent
    groupingT = grouping
    categoryT = category
    other \(T=\) other
    contextActivity \(=\{\) ca : object \(\backslash\) (agent, group, objectType, objectTypeSub, substatement \()\}\)
    contextActivityParent \(=(\) parentT, contextActivity \()\)
    contextActivityCategory \(=(\) category \(T\), contextActivity \()\)
    contextActivityGrouping \(=(\) grouping \(T\), contextActivity \()\)
    contextActivityOther \(=(\) other \(T\), contextActivity \()\)
    contextActivities \(=\mathbb{P}_{1}\{\) contextActivityParent, contextActivityCategory,
    contextActivityGrouping, contextActivityOther \(\}\)
    context \(=\mathbb{P}_{1}\{\) registration, instructor, team, contextActivities, revision,
        platform, language, statement, extensions \(\}\)
```

- The schema Context introduces the component context which is the nonempty powerset of registration, instructor, team, contextActivities, revision, platform, language, statement and extensions
- The notation object \agent represents the component object except for its subcomponent agent

2.8 Timestamp and Stored Schema

Timestamp \qquad
timestamp $: \mathbb{F}_{1} \# 1$
\qquad
stored: $\mathbb{F}_{1} \# 1$

- The schema Timestamp and stored introduce the component timestamp and stored respectively. Each are non-empty, finite sets containing one value

2.9 Attachments Schema

_ Attachments
display, description, attachment, attachments : \mathbb{F}_{1} usageType, sha 2 , fileUrl, contentType $: \mathbb{F}_{1} \# 1$
length : \mathbb{N}
attachment $=\{$ usageType, display, contentType, length, sha 2$\} \cup \mathbb{P}\{$ description, fileUrl $\}$
attachments $=\{a:$ attachment $\}$

- The schema Attachments introduces the component attachments which is a non-empty, finite set of the component attachment
- The component attachment is a non-empty, finite set of the components usageType, display, contentType, length, sha 2 with optionally description and/or fileUrl

2.10 Statement and Statements Schema

_Statement
Id
Actor
Verb
Object
Result
Context
Timestamp
Stored
Attachments
statement : ST ATEMENT
statement $=\{$ actor, verb, object, stored $\} \cup$
$\mathbb{P}\{\mathrm{id}$, result, context, timestamp, attachments $\}$

- The schema Statement introduces the component statement which consists of the components actor, verb, object and stored and the optional components id, result, context, timestamp, and/or attachments
- The schema Statement allows for subcomponent of statement to referenced via the . (selection) operator

```
Statements
Statement
IsoToUnix
statements:}\mp@subsup{\mathbb{F}}{1}{
statements={s:statement }|\forall\mp@subsup{s}{n}{}:\mp@subsup{s}{i}{}...\mp@subsup{s}{j}{}\bulleti\leqn\leq
\bullet convert (si.timestamp) \leqconvert(sj.timestamp)}
```

- The schema Statements introduces the component statements which is a non-empty, finite set of the component statement which are in chronological order.

3 Operations, Primitives and Algorithms

The following sections introduce, define and explain Operations, Primitives and Algorithms generally using the Terminology presented below. Operations are the building blocks of Primitives whereas Primitives are the building blocks of Algorithms. The definitions which follow are flexible enough to support implementation across programing languages but have been inspired by the core concepts found within Lisp and Z . The focus of these sections is to define the properties of and interactions between Operations, Primitives and Algorithms in a general way which doesn't place unnecessary bounds on their range of possible functionality with respect to processing xAPI data.

3.1 Terminology

Within this document, (s) indicates one or more.

3.1.1 Scalar

When working with xAPI data, Statements are written using JavaScript Object Notation (JSON). This data model supports a few fundamental types as described by JSON Schema. In order to speak about a singular valid JSON value (string, number, boolean, null) generically, the term Scalar is used. To talk about a scalar within a Z Schema, the following free and basic types are introduced.

$$
\begin{aligned}
& {[\text { STRING, NULL] }} \\
& \text { Boolean }:==\text { true } \mid \text { false } \\
& \text { Scalar }:==\text { Boolean } \mid \text { STRING }|N U L L| \mathbb{Z}
\end{aligned}
$$

Arrays and Objects are also valid JSON values but will be referenced using the terms Collection and Map \vee KV respectively.

3.1.2 Collection

a sequence $\langle\ldots\rangle$ of items c such that each $c: \mathbb{N} \times V \Rightarrow(\mathbb{N}, V) \Rightarrow \mathbb{N} \mapsto V$

$$
\begin{array}{|l}
C: \text { Collection } \\
\hline C=\left\langle c_{i} . . c_{n} . . c_{j}\right\rangle \Rightarrow\left\{i \mapsto c_{i}, n \mapsto c_{n}, j \mapsto c_{j}\right\} \bullet i \leq n \leq j \Rightarrow i \prec n \prec j \Longleftrightarrow i \neq n \neq j
\end{array}
$$

And the following free type is introduced for collections

$$
\begin{array}{lr}
\text { Collection }:==\text { emptyColl } \mid \text { append }\langle\langle\text { Collection } \times \text { Scalar } \vee \text { Collection } \vee K V \times \mathbb{N}\rangle\rangle \\
\text { emptyColl } & \text { [the empty Collection }\rangle] \\
\text { append } & \text { [is a constructor and is inferred to be an injection] } \\
K V & {[\text { a free type introduced bellow] }} \\
\text { append }(\text { emptyColl, } c ?, 0)=\left\langle c_{0}\right\rangle \Rightarrow\{0 \mapsto c ?\} & {[\text { append adds } c \text { ? to }\rangle \text { at } \mathbb{N}]}
\end{array}
$$

3.1.3 Key

An identifier k paired with some value v to create an ordered pair $(k, v) . k$ can take on any valid JSON value (Scalar, Collection, KV) except for the Scalar null. The following free type is introduced for keys.

$$
K::=(\text { Scalar } \backslash N U L L) \mid \text { Collection } \mid K V
$$

3.1.4 Value

A value v is paired with an identifier k to create an ordered pair $(k, v) . v$ can be any valid JSON value (Scalar, Collection, KV) The following free type is introduced for values.

$$
V::=\text { Scalar } \mid \text { Collection } \mid K V
$$

3.1.5 Map

Within the Z Notation Introduction section, Maps are introduced using the free type $K V$.

$$
K V::=\text { base } \mid \text { associate }\langle\langle K V \times X \times Y\rangle\rangle
$$

This definition is more accurately

$$
K V::=\text { base } \mid \text { associate }\langle\langle K V \times K \times V\rangle\rangle
$$

which indicates the usage of Key k and Value v within associate. Using this updated definition,

$$
\text { associate }(\text { base }, k, v)=\langle\langle(k, v)\rangle\rangle
$$

such that a Map is a Collection of ordered pairs $\left(k_{n}, v_{n}\right)$ and thus a Collection of mappings

$$
\left(k_{n}, v_{n}\right) \Rightarrow k_{n} \mapsto v_{n}
$$

but Maps are special cases of Collections as k_{n} is the unique identifier of v_{n} within a Map but the opposite is not true. In fact, keys are their own identifiers

$$
\begin{aligned}
& \text { id } v_{n}=k_{n} \\
& \operatorname{id} k_{n} \neq v_{n} \\
& \operatorname{id} k_{n}=k_{n}
\end{aligned}
$$

Given a Map $M=\left\langle\left\langle\left(k_{i}, v_{i}\right) . .\left(k_{n}, v_{n}\right) . .\left(k_{j}, v_{j}\right)\right\rangle\right\rangle$ the following demonstrates the uniqueness of Keys but the same is not true for all v within M

$$
\begin{aligned}
& k_{i} \neq k_{n} \neq k_{j} \\
& v_{i}=v_{n} \vee v_{i} \neq v_{n} v_{i}=v_{j} \vee v_{i} \neq v_{j} v_{j}=v_{n} \vee v_{j} \neq v_{n}
\end{aligned}
$$

which can all be stated formally as

```
\(=[K, V]\)
    Map: \(K \times V \rightarrow K V\)
    Map \(=\left\langle\left\langle\left(k_{i}, v_{i}\right) . .\left(k_{n}, v_{n}\right) . .\left(k_{j}, v_{j}\right)\right\rangle\right\rangle\)
    \(\operatorname{dom} \operatorname{Map}=\left\{k_{i} . . k_{n} . . k_{j}\right\}\)
    \(\operatorname{ran} \operatorname{Map}=\left\{v_{i} . . v_{n} . . v_{j}\right\}\)
    \(\operatorname{first}\left(k_{i}, v_{i}\right) \neq \operatorname{first}\left(k_{n}, v_{n}\right) \neq \operatorname{first}\left(k_{j}, v_{j}\right) \wedge\)
    \(v_{i}=v_{n} \vee v_{i} \neq v_{n} v_{i}=v_{j} \vee v_{i} \neq v_{j} v_{j}=v_{n} \vee v_{j} \neq v_{n} \wedge\)
    id \(v_{i}=k_{i} \wedge\) id \(v_{n}=k_{n} \wedge \operatorname{id} v_{j}=k_{j} \wedge\)
    id \(k_{i}=k_{i} \wedge \operatorname{id} k_{n}=k_{n} \wedge \operatorname{id} k_{j}=k_{j}\)
```

Given that v can be a Map M, or a Collection C, Arbitrary nesting is allowed within Maps but the properties of a Map hold at any depth.
$M=\left\langle\left\langle\left(k_{i}, v_{i}\right) . .\left(k_{n},\left\langle\left\langle\left(k_{n i}, v_{n i}\right)\right\rangle\right\rangle\right) . .\left(k_{j},\left\langle v_{j i} . .\left\langle\left\langle\left(k_{j n}, v_{j n}\right)\right\rangle\right\rangle . .\left\langle v_{j j i} . . v_{j j n} . . v_{j j j}\right\rangle\right\rangle\right)\right\rangle\right\rangle$
such that $\left\langle\left\langle\left(k_{n i}, v_{n i}\right)\right\rangle\right\rangle$ and $\left\langle\left\langle\left(k_{n j}, v_{n j}\right)\right\rangle\right\rangle$ are both Maps and adhere to the constraints enumerated above.

3.1.6 Statement

Immutable Map conforming to the xAPI Specification as described in the xAPI Formal Definition section of this document. The immutability of a Statement s is demonstrated by the following which indicates that s was not altered when passed to associate.

```
s!,s?: STATEMENT
k?:K
v?:V
s!=associate(s?,k?,v?)=s?=>(k?,v?)\not\ins!=>s!=s?
```

Additionally, given the schema Statements the following is true for all Statement(s)

```
Statements
Keys : STRING
\(S:\) Collection
Keys \(=\{\) id, actor, verb, object, result, context, attachments, timestamp, stored \(\}\)
dom statement \(=K \triangleleft\) Keys
\(S=\left\langle\right.\) statement \(_{i} .\). statement \(_{n} .\). statement \(\left._{j}\right\rangle \bullet\)
    atKey \(\left(\right.\) statement \(\left._{i}, i d\right) \neq \operatorname{atKey}\left(\right.\) statement \(\left._{n}, i d\right) \neq\) atKey \(\left(\right.\) statement \(\left._{j}, i d\right) \Rightarrow\)
    \(i d_{i} \neq i d_{n} \neq i d_{j} \Longleftrightarrow\) statement \(_{i} \neq\) statement \(_{n} \neq\) statement \(_{j}\)
```

Which confirms the constraints found in the schema Statement and adds an additional constraint to Statements such that every unique Statement in a Collection of Statements has a unique id.

3.1.7 Algorithm State

Mutable Map state without any domain restriction such that

$$
\begin{aligned}
& \text { state } ?, \text { state }: \text { : } K V \\
& k ?: K \\
& v ?: V \\
& \hline \text { associate }(\text { state } ?, k ?, v ?)=\text { state }!\bullet(k, v) \in \text { state }!\Rightarrow \text { state } ? \neq \text { state }!
\end{aligned}
$$

3.1.8 Option

Mutable Map opt which is used to alter the result of an Algorithm. The effect of opt on an Algorithm will be discussed in the Algorithm Result section bellow.

4 Operation

An Operation is a function of arbitrary arguments and is defined using Z. For example, Operations pulled directly from "The Z Notation: A Reference Manual" include

- first
- second
- succ
- min
- max
- count $\equiv \#$
-
- rev
- head
- last
- tail
- front
- 1
- \upharpoonright
- -/
- disjoint
- partition
- \otimes
- \uplus
- \cup
- items

4.1 Domain

The arguments passed to an Operation can be any of the following but the definition of an Operation may limit the domain to a subset of the following

- Key(s)
- Value(s)
- $\operatorname{Set}(\mathrm{s})$
- Collection(s)
- Bag(s)
- KV(s)
- Statement(s)
- Algorithm State

4.2 Range

The result of an Operation can be any of the following but the definition of an Operation may limit this range to a subset of the following

- Key(s)
- Value(s)
- Set(s)
- Collection(s)
- Bag(s)
- KV(s)
- Statement(s)
- Algorithm State

5 Primitive

Primitives break the processing of xAPI data down into discrete units that can be composed to create new analytical functions. Primitives allow users to address the methodology of answering research questions as a sequence of generic algorithmic steps which establish the necessary data transformations, aggregations and calculations required to reach the solution in an implementation agnostic way.

Within this document, they will be defined as a Collection of Operations and/or Primitives where the output is piped from member to member. In this section, o_{n} and p_{n} can be used as to describe Primitive members but for simplicity, only o_{n} will be used.

$$
p_{\langle i . . n . . j\rangle}=o_{i} \gg o_{n} \gg o_{j}
$$

Within any given Primitive p, variables local to p and any global variables may be passed as arguments to any member of p and there is no restriction on the ordering of arguments with respect to the piping. In the following, q ? is a global variable whereas the rest are local.

$$
\begin{aligned}
& x ?, y ?, z ?, i!, n!, j!, p!: \text { Value } \\
& o_{i}: \text { Value } \rightarrow \text { Value } \\
& o_{n}: \text { Value } \times \text { Value } \rightarrow \text { Value } \\
& o_{j}, p: \text { Value } \times \text { Value } \times \text { Value } \rightarrow \text { Value } \\
& i!=o_{i}(x ?) \\
& n!=o_{n}(i!, y ?) \\
& j!=o_{j}(z ?, n!, q ?) \\
& p!=j!\Rightarrow o_{j}\left(z ?, o_{n}\left(o_{i}(x ?), y ?\right), q ?\right)
\end{aligned}
$$

In the rest of this document, the following notation is used to distinguish between the functionality of a Primitive and its composition. This notation should be used when defining Primitives.

$$
\begin{array}{|l}
\text { primitiveName }:_{-} \rightarrow- \\
\hline \text { primitiveName }=\left\langle\text { primitiveName }_{i_{-} . .} \text {primitiveName }_{n-. .} \text { primitiveName }_{j-}\right\rangle
\end{array}
$$

- The top line indicates the Primitive
- should be written using postfix notation within other schemas
- is at least a partial function from some input to some output
- The bottom line is an enumeration of the composing Operations and/or Primitives and their order of execution

This means the definition of p from above can be updated as follows.

$$
\begin{aligned}
& p_{-}: \text {Value } \times \text { Value } \times \text { Value } \rightarrow \text { Value } \\
& p=\left\langle o_{i}, o_{n}, o_{j}\right\rangle \\
& p(x ?, y ?, z ?)=o_{j}\left(z ?, o_{n}\left(o_{i}(x ?), y ?\right), q ?\right)
\end{aligned}
$$

Additionally, this notation supports declaration of recursive iteration via the presence of recur _ within a Primitive chain

$$
\begin{aligned}
& \text { primitiveName }_{i}=\left\langle\left\langle\text { primitiveName }_{i i_{-},}, \text {primitiveName }_{i_{n-}}\right\rangle, \text { recur }_{-}\right\rangle_{\#_{-}} \\
& \left\langle\left\langle\text {primitiveName }_{i i_{-}}, \text {primitiveName }_{i n_{-}}\right\rangle \text {, recur }{ }_{-}\right\rangle_{-}^{\#-} \Rightarrow \\
& \text { (primtiveName } \left.{ }_{i i} \gg \text { primitiveName }_{i n}\right)^{\#-\bullet} \\
& \forall n: i . . j \bullet j=\# \#_{-} \wedge i \leq n \leq j \mid \exists_{1} p_{n}: \rightarrow_{-} \rightarrow-\bullet \\
& \text { let } \quad p_{i}==\text { primtiveName }{ }_{i i} \gg \text { primitiveName }{ }_{i n} \Rightarrow \\
& p_{i_{-}}=\text {primitiveName }_{\text {in }} \text { (primitiveName }{ }_{i i-} \text {) } \\
& p_{n}==p_{i} \gg \text { primtiveName }{ }_{i i} \gg \text { primitiveName }_{i n} \Rightarrow \\
& p_{n-}=\text { primitiveName }_{i n}\left(\text { primitiveName }_{i i}\left(p_{i-}\right)\right) \\
& p_{j}==p_{n} \gg \text { primtiveName }{ }_{i i} \gg \text { primitiveName }_{\text {in }} \Rightarrow \\
& p_{j-}=\text { primitiveName }_{\text {in }}\left(\text { primitiveName }_{i i}\left(p_{n-}\right)\right) \\
& p_{j}=\left(\text { primtiveName }_{i i} \gg \text { primitiveName }_{\text {in }}\right)^{\#-} \bullet j=3 \Rightarrow \\
& \text { (primtiveName }{ }_{i i} \gg \text { primitiveName }{ }_{i n} \text {) >> } \\
& \text { (primtiveName } \left.{ }_{i i} \gg \text { primitiveName }_{\text {in }}\right) \gg \\
& \text { (primtiveName }{ }_{i i} \gg \text { primitiveName }_{\text {in }} \text {) } \Rightarrow \\
& \text { primitiveName }{ }_{\text {in }} \text { (} \\
& \text { primitiveName }{ }_{i i}(\\
& \text { primitiveName }{ }_{\text {in }}(\\
& \text { primitiveName } \left.\left.{ }_{i i}\left(p_{i-}\right)\right)\right) \text {) }
\end{aligned}
$$

Here, p_{i} was chosen to only be two primitives primtiveName ${ }_{i i} \wedge$ primitiveName $_{\text {in }}$ for simplicity sake. The Primitive chain can be of arbitrary length. The number of iterations is described using the count operation $\#_{~}$. Above $j=3$ was used to demonstrate the piping between iterations but j is not exclusively $=3$. Given above, the term Primitive Chain can be defined as:

$$
\begin{aligned}
& \left(\text { primtiveName }_{i} \gg \text { primitiveName }{ }_{n} \gg \text { primitiveName }_{j}\right)^{\#-} \text { • } \\
& \#_{-}=0 \Rightarrow \text { primtiveName }_{i} \gg \text { primitiveName }_{n} \gg \text { primitiveName }_{j}
\end{aligned}
$$

where a Primitive chain iterated to the 0 is just the chain itself hence recursion is not a requirement of, but is supported within, the definition of Primitives.

5.1 Domain

Any of the following dependent upon the Operations which compose the Primitive

- Key(s)
- Value(s)
- $\operatorname{Set}(\mathrm{s})$
- Collection(s)
- Bag(s)
- KV(s)
- Statement(s)
- Algorithm State

5.2 Range

Any of the following dependent upon the Domain and Functionality of the Primitive

- Key(s)
- Value(s)
- $\operatorname{Set}(\mathrm{s})$
- Collection(s)
- Bag(s)
- KV(s)
- Statement(s)
- Algorithm State

6 Algorithm

Given a Collection of statement(s) $S_{\langle a . . b . . c\rangle}$ and potentially option(s) opt and potentially an existing Algorithm State state an Algorithm A executes as follows

1. call init
2. for each stmt $\in S_{\langle a . . b . . c\rangle}$
(a) relevant?
(b) accept?
(c) step
3. return result
with each process within A is enumerated as
```
(init [state] body)
    - init state
(relevant? [state statement] body)
    - is the statement valid for use in algorithm?
(accept? [state statement] body)
    - can the algorithm consider the current statement?
(step [state statement] body)
    - processing per statement
    - can result in a modified state
(result [state] body)
    - return without option(s) provided
    - possibly sets default option(s)
(result [state opt] body)
    - return with consideration to option(s)
```

- body is a collection of Primitive(s) which establishes the processing of inputs \rightarrow outputs
- state is a mutable Map of type $K V$ and synonymous with Algorithm State
- statement is a single statement within the collection of statements passed as input data to the Algorithm A
- opt are additional arguments passed to the algorithm A which impact the return value of the algorithm and synonymous with Option

An Algorithm must be passed an Algorithm State and a Collection of Statement(s). Option is optional.

- Statement(s)
- Algorithm State
- Option(s)

An Algorithm will return an Algorithm State.

- Algorithm State

An Algorithm can be described via its components. A formal definition for an Algorithm is presented at the end of this section. The following subsections go into more detail about the components of an Algorithm.

$$
\text { Algorithm }::=\text { Init } \gg \text { Relevant } ? \gg \text { Accept } ? \gg \text { Step } \gg \text { Result }
$$

6.1 Initialization

First process to run within an Algorithm which returns the Algorithm State for the current iteration.

```
Init \([K V]\)
    state?, state! : KV
    init_ : \(K V \rightarrow K V\)
    init \(=\langle\) body \(\rangle\)
    state \(!=\operatorname{init}(\) state,\() \bullet\) state \(!=\) state,\(\vee\) state \(!\neq\) state \(?\)
```

such that some state! does not need to be related to its arguments state? but state! could be derived from some seed state?. This functionality is dependent upon the composition of body within init.

6.1.1 Domain

- Algorithm State

6.1.2 Range

- Algorithm State

6.2 Relevant?

First process that each stmt passes through \Rightarrow relevant $? \prec$ accept $? \prec$ step

```
Relevant?[KV,ST ATEMENT]
    state?: KV
    stmt?: STATEMENT
    relevant? _ : KV × STATEMENT }->\mathrm{ Boolean
    relevant? = <body\rangle
    relevant?(state?,stmt?)}=\mathrm{ true }\vee\mathrm{ false
```

resulting in an indication of whether the stmt is valid within algorithm A. The criteria which determines validity of stmt within A is defined by the body of relevant?

6.2.1 Domain

- Statement
- Algorithm State

6.2.2 Range

- Boolean

6.3 Accept?

Second process that each stmt passes through \Rightarrow relevant $? \prec$ accept $? \prec$ step

```
Accept? \([K V, S T A T E M E N T]\)
    state? : KV
    stmt? : ST ATEMENT
    accept? _ : KV \(\times\) STATEMENT \(\rightarrow\) Boolean
    accept \(?=\langle\) body \(\rangle\)
    accept \(?(\) state \(?\), stmt \(?)=\) true \(\vee\) false
```

resulting in an indication of whether the stmt can be sent to step given the current state. The criteria which determines usability of stmt given state is defined by the body of accept?

6.3.1 Domain

- Statement
- Algorithm State

6.3.2 Range

- Scalar

6.4 Step

An Algorithm Step consists of a sequential composition of Primitive(s) where the output of some function is passed as an argument to the next function both within and across Primitives in body.
$\operatorname{body}=p_{i} \gg p_{n} \gg p_{j} \Rightarrow o_{i i} \gg o_{i n} \gg o_{i j} \gg o_{n i} \gg o_{n n} \gg o_{n j} \gg o_{j i} \gg o_{j n} \gg o_{j j}$
The selection and ordering of Operation(s) and Primitive(s) into an Algorithmic Step determines how the Algorithm State changes during iteration through Statement(s) passed as input to the Algorithm.

$$
\begin{aligned}
& P=\left\langle p_{i} . . p_{n} . . p_{j}\right\rangle \bullet i \leq n \leq j \Rightarrow i \prec n \prec j \Longleftrightarrow i \neq n \neq j \bullet p_{i} \gg p_{n} \gg p_{j} \\
& P^{\prime}=\left\langle p_{i^{\prime}} . . p_{n^{\prime}} . . p_{j^{\prime}}\right\rangle \bullet i^{\prime} \leq n^{\prime} \leq j^{\prime} \Rightarrow i^{\prime} \prec n^{\prime} \prec j^{\prime} \Longleftrightarrow i^{\prime} \neq n^{\prime} \neq j^{\prime} \bullet p_{i^{\prime}} \gg p_{n^{\prime}} \gg p_{j^{\prime}} \\
& P^{\prime \prime}=\left\langle p_{x} . . p_{y} . . p_{z}\right\rangle \bullet x \leq y \leq z \Rightarrow x \prec y \prec z \Longleftrightarrow x \neq y \neq z \bullet p_{x} \gg p_{y} \gg p_{z} \\
& P=P^{\prime} \Longleftrightarrow i \mapsto i^{\prime} \wedge n \mapsto n^{\prime} \wedge j \mapsto j^{\prime} \\
& P=P^{\prime \prime} \Longleftrightarrow(i \mapsto x \wedge n \mapsto y \wedge j \mapsto z) \wedge\left(p_{i} \equiv p_{x} \wedge p_{n} \equiv p_{y} \wedge p_{j} \equiv p_{z}\right)
\end{aligned}
$$

step may or may not update the input Algorithm State given the current Statement from the Collection of Statement(s).

$$
\begin{aligned}
& S \text { : Collection } \\
& \text { stm }_{a}, \text { stmt }_{b}, \text { stmt }_{c}: S T A T E M E N T \\
& \text { state? , step } a!\text {, step }{ }_{b} \text { !, step }{ }_{c} \text { ! : KV } \\
& \text { step }]_{-} K V \times S T A T E M E N T \rightarrow K V
\end{aligned}
$$

$$
\begin{aligned}
& \text { step }_{a}!=\operatorname{step}\left(\text { state } ?,, \text { stmt }_{a}\right) \bullet \text { step }_{a}!=\text { state } ? \vee \text { step }_{a}!\neq \text { state } ? \\
& \text { step }_{b}!=\operatorname{step}\left(\text { step }_{a}!, \text { stmt }_{b}\right) \bullet \text { step }_{b}!=\text { step }_{a}!\vee \text { step }_{b}!\neq \text { step }_{a}! \\
& \text { step }_{c}!=\operatorname{step}\left(\text { step }_{b}!, \text { stmt }_{c}\right) \bullet \text { step }_{c}!=\text { step }_{b}!\vee \text { step }_{c}!\neq \text { step }_{b}!
\end{aligned}
$$

In general, this allows step to be defined as

$$
\begin{aligned}
& \text { Step }[K V, S T A T E M E N T] \\
& \text { state } ?, \text { state }!: K V \\
& \text { stmt } ?: S T A T E M E N T \\
& \text { step }-K V \times S T A T E M E N T \rightarrow K V \\
& \text { step }=\langle\text { body }\rangle \\
& \text { state }!=\text { step }(\text { state } ?, \text { stmt } ?)=\text { state } ? \vee \text { state }!\neq \text { state } ?
\end{aligned}
$$

A change of state $? \rightarrow$ state $!\bullet$ state $!\neq$ state ? can be predicted to occur given

- The definition of individual Operations which constitute a Primitive
- The ordering of Operations within a Primitive
- The Primitive(s) chosen for inclusion within the body of step
- The ordering of Primitive(s) within the body of step
- The key value pair(s) in both Algorithm State and the current Statement
- The ordering of Statement(s)

6.4.1 Domain

- Statement
- Algorithm State

6.4.2 Range

- Algorithm State

6.5 Result

Last process to run within an Algorithm which returns the Algorithm State state when all $s \in S$ have been processed by step

$$
\begin{aligned}
& \text { relevant } ? \prec \text { accept } ? \prec \text { step } \prec \text { result } \prec \text { relevant } ? \Longleftrightarrow S \neq \emptyset \\
& \text { relevant } ? \prec \text { accept } ? \prec \text { step } \prec \text { result } \Longleftrightarrow S=\emptyset
\end{aligned}
$$

and does so without preventing subsequent calls of A

$$
\begin{aligned}
& \text { Result }[K V, K V] \\
& \text { result }!, \text { state } ?, \text { opt } ?: K V \\
& \text { result }-: K V \times K V \rightarrow K V \\
& \text { result }=\langle b o d y\rangle \\
& \text { result }!=\operatorname{result}(\text { state } ?, \text { opt } ?)=\text { state } ? \vee \text { state }!\neq \text { state } ?
\end{aligned}
$$

such that if at some future point j within the timeline $i . . n . . j$

$$
\begin{array}{lr}
S\left(t_{n}\right)=\emptyset & {\left[\mathrm{S} \text { is empty at } t_{n}\right]} \\
S\left(t_{j}\right) \neq \emptyset & {\left[\mathrm{S} \text { is not empty at } t_{j}\right]} \\
S\left(t_{n-i}\right) & {\left[\operatorname{stmts}(\mathrm{s}) \text { added to } S \text { between } t_{i} \text { and } t_{n}\right]} \\
S\left(t_{j-n}\right) & {\left[\operatorname{stmts}(\mathrm{s}) \text { added to } S \text { between } t_{n} \text { and } t_{j}\right]} \\
S\left(t_{j-i}\right)=S\left(t_{n-i}\right) \cup S\left(t_{j-n}\right) & {\left[\operatorname{stmts}(\mathrm{s}) \text { added to } S \text { between } t_{i} \text { and } t_{j}\right]}
\end{array}
$$

Algorithm A can pick up from a previous state ${ }_{n}$ without losing track of its own history.

$$
\begin{aligned}
& \text { state }_{n-i}=A\left(\text { state }_{i}, S\left(t_{n-i}\right)\right) \\
& \text { state }_{n-1}=A\left(\text { state }_{n-2}, S\left(t_{n-1}\right)\right) \\
& \text { state }_{n}=A\left(\text { state }_{n-1}, S\left(t_{n}\right)\right) \\
& \text { state }_{j-n}=A\left(\text { state }_{n}, S\left(t_{j-n}\right)\right) \\
& \text { state }_{j}=A\left(\text { state }_{i}, S\left(t_{j-i}\right)\right) \\
& \text { state }_{n}=\text { state }_{n-1} \Longleftrightarrow S\left(t_{n}\right)=\emptyset \wedge S\left(t_{n-1}\right) \neq \emptyset \\
& \text { state }_{j}=\text { state }_{j-n} \Longleftrightarrow \text { state }_{n-i}=\text { state }_{n}=\text { state }_{n-1}
\end{aligned}
$$

Which makes A capable of taking in some $S_{\langle i . . n . . j . . \infty\rangle}$ as not all $s \in S_{\langle i . . \infty\rangle}$ have to be considered at once. In other words, the input data does not need to
persist across the history of A, only the effect of s on state must be persisted. Additionally, the effect of opt is determined by the body within result such that

$$
\begin{aligned}
& A\left(\text { state }_{n}, S\left(t_{j-n}\right), \text { opt }\right) \\
& \quad \equiv A\left(\text { state }_{i} S\left(t_{j-i}\right)\right) \\
& \quad \equiv A\left(\text { state }_{i}, S\left(t_{j-i}\right), \text { opt }\right) \\
& \quad \equiv A\left(\text { state }_{n}, S\left(t_{j-n}\right)\right)
\end{aligned}
$$

implying that the effect of opt doesn't prevent backwards compatibility of state.

6.5.1 Domain

- Algorithm State
- Option(s)

6.5.2 Range

- Algorithm State

6.6 Algorithm Formal Definition

In previous sections, A_{-}was used to indicate calling an Algorithm. In the rest of this document, that notation will be replaced with algorithm_. This new notation is defined using the definitions of Algorithm Components presented above. The previous definition of an Algorithm

$$
\text { Algorithm }::=\text { Init } \gg \text { Relevant } ? \gg \text { Accept } ? \gg \text { Step } \gg \text { Result }
$$

can be refined using the Operation recur and Primitive algorithmIter (defined in following subsections) to illustrate how an Algorithm processes a Collection of Statement(s).

```
_ Algorithm \([K V\), Collection, KV]
    Algorithm Iter, Recur, Init, Result
    opt?, state?, state! : KV
    \(S ?:\) Collection \(\bullet \forall s ? \in S ? \mid s ?: S T A T E M E N T\)
    algorith \(m_{-}: K V \times\) Collection \(\times K V \rightarrow K V\)
    algorithm \(=\left\langle\right.\) init \(_{-},\left\langle\text {algorithmIter }- \text { recur }_{-}\right\rangle^{\# S ?}\), result -\(\rangle\)
    state \(!=\operatorname{algorithm}(\) state \(?, S ?\), opt \(?) \bullet\)
        let init! \(==\operatorname{init}(\) state ? \() \bullet\)
        \(\forall s_{n} \in S ? \mid s_{n}: S T A T E M E N T, n: \mathbb{N} \bullet i \leq n \leq j \bullet\)
            \(\exists_{1}\) state \(_{n} \mid\) state \(_{n}: K V \bullet\)
                let \(S ?_{n}=\operatorname{tail}(S ?)^{n-i}\)
                            state \(_{i}=\) algorithmIter \(\left(\right.\) init \(\left.!, S ?_{n}\right) \Rightarrow S ?_{n}=S ? \Longleftrightarrow n=i\)
                    state \(_{n}=\operatorname{recur}\left(\text { state }_{i}, S ?_{n},{ }_{-} \text {algorithmIter_}\right)^{j-1} \Longleftrightarrow n \neq i \wedge n \neq j\)
                    state \(_{j}=\operatorname{recur}\left(\right.\) state \(_{n},(\{j-1, j\} \upharpoonleft S ?),_{-}\)algorithmIter_ \() \Longleftrightarrow n=j\)
                    state \(_{j+1}=\) state \(_{j} \Rightarrow \operatorname{recur}\left(\right.\) state \(_{j},(j \upharpoonleft S ?),_{-}\)algorithmIter_ \() \Longleftrightarrow n=j+1\)
        \(=\operatorname{result}\left(\right.\) state \(_{j}\), opt? \()\)
```

Within the schema above, the following notation is intended to show that algorithm is a Primitive \Rightarrow Collection of Primitives and/or Operations.

$$
\left\langle\text { init }_{-},\left\langle\text {algorithmIter }_{-}, \text {recur }_{-}\right\rangle^{\# S ?} \text {, result_ }\right\rangle
$$

Within that notation, the following notation is intended to represent the iteration through the Statement(s) via tail recursion.

$$
\left\langle\text { algorithmIter }_{-}, \text {recur }_{-}\right\rangle^{\# S ?}
$$

which implies that each Statement is passed to algorithmIter _ and the result is then passed on to the next iteration of the loop. The completion of this loop is the prerequisites of result ${ }_{-}$

6.6.1 Recur

The following schema introduces the Operation recur which expects an accumulator (KV), a Collection of Value(s) (V) being iterated over and a function $(-\rightarrow-)$ which will be called as the result of recur. This Operation has been written to be as general purpose as possible and represents the ability to perform tail recursion. Given this intention, recur must only ever be the last Operation within a Primitive

$$
\begin{array}{|l}
p_{i \ldots j}: \mathrm{seq}_{1} \bullet \forall o \in p \mid o: _\rightarrow- \\
\hline p_{i \ldots j}=\langle\forall n: \mathbb{N}| i \leq n \leq j \wedge o_{n} \in p_{i . . j} \bullet \\
\quad \exists_{1} o_{n} \bullet o_{n} \neq \text { recur } \vee o_{n}=\operatorname{recur} \\
\\
\text { front }\left(p_{i \ldots j}\right) \upharpoonright \text { recur }=\langle \rangle
\end{array}
$$

and results in a call to the passed in function where the accumulator ack? and the Collection (minus the first member) are passed as arguments to $f n$?. If this would result in the empty Collection (\rangle) being passed to $f n$?, instead the accumulator ack? is returned.

```
\(-\operatorname{Recur}[\) KV, Collection, ( \(\rightarrow-\) )]
    ack? : KV
    S?: Collection
    fn?: ( \(\rightarrow\) _)
    recur \(-: K V \times\) Collection \(\times\left(\rightarrow_{-}\right) \leftrightarrow\left(K V \times\right.\) Collection \(\left.\rightarrow{ }_{-}\right)\)
    \(\operatorname{recur}(\operatorname{ack} ?, S ?, f n ?)=f n ?(\operatorname{ack} ?, \operatorname{tail}(S ?)) \Longleftrightarrow \operatorname{tail}(S ?) \neq\langle \rangle\)
    \(\operatorname{recur}(a c k ?, S ?, f n ?)=\operatorname{first}(\operatorname{ack} ?, \operatorname{tail}(S ?)) \Longleftrightarrow \operatorname{tail}(S ?)=\langle \rangle\)
```

In the context of Algorithms,

$$
\begin{aligned}
& \text { ack } ?=\text { AlgorithmState } \\
& S ?=\text { CollectionofStatement }(s) \\
& \text { fn } ?=\text { algorithmIter }
\end{aligned}
$$

6.6.2 Algorithm Iter

The following schema introduce the Primitive algorithmIter which demonstrates the life cycle of a single statement as its passed through the components of an Algorithm.

```
AlgorithmIter[KV, Collection]
    Relevant?, Accept?, Step
    state? , state! : KV
    S? : Collection
    \(s ?\) : STATEMENT
    algorithmIter_: KV \(\times\) STATEMENT \(\rightarrow K V\)
    algorithmIter \(=\left\langle\right.\) relevant \(?_{-}\), accept \(?_{-}\), step \(\left.{ }_{-}\right\rangle\)
    \(s ?=\operatorname{head}(S ?)\)
    state \(!=\) algorithmIter (state \(?, s ?) \bullet\)
        let relevant \(!==\) relevant \(?(\) state \(?, s ?)\)
        accept \(!==\operatorname{accept} ?(\) state \(?, s ?)\)
        step \(!==\operatorname{step}(\) state \(?, s ?)\)
    \(=(\) state \(? \Longleftrightarrow\) relevant \(!=\) false \(\vee\) accept \(!=\) false \() \vee\)
        \((\) step \(!\Longleftrightarrow\) relevant \(!=\) true \(\wedge\) accept \(!=\) true \()\)
```

If a statement if both relevant and acceptable, state! will be the result of step. Otherwise, the passed in state is returned \Rightarrow step $!=$ state $?$.

7 Foundational Operations

The Operations in this section use the Operations pulled from the Z Reference Manual (section 1,4) within their own definitions. They are defined as Operations opposed to Primitives because they represent core functionality needed in the context of processing xAPI data given the definition of an Algorithm above. As such, these Operations are added to the global dictionary of symbols usable, without a direct reference to the components schema, within the definition of Operations and Primitives throughout the rest of this document. In general, Operations are intended to be simple, and should not contain any recursive calls. They are building blocks which are used across Primitives of varying functionality. When defining an Operation not already in the set of Foundational Operations defined here, its schema MUST be referenced at the top of all Schemas which utilize the new Operation.

7.1 Collections

Operations which expect a Collection $X=\left\langle x_{i} . . x_{n} . . x_{j}\right\rangle$

7.1.1 Array?

The operation array? will return a boolean which indicates if the passed in argument is a Collection

```
_Array? \([V]\)
    coll? : V
    bol!: Boolean
    array? _ : V Boolean
    bol \(!=\operatorname{array} ?(\) coll \(?) \bullet\) bol \(!=\) true \(\Longleftrightarrow\) coll \(?:\) Collection \(\Rightarrow V \backslash(\) Scalar,\(K V)\)
```

where $V \backslash(S c a l a r, K V)$ is used to indicate that coll? is of type V

$$
V::=\text { Scalar } \mid \text { Collection } \mid K V
$$

but in order for bol $!=$ true, coll? must not be of type Scalar $\vee K V$ such that

$$
\begin{array}{ll}
X= & \left\langle x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle \\
& x_{0}=0 \\
& x_{1}=\text { foo } \\
& x_{2}=\langle b a z, q u x\rangle \\
& x_{3}=\langle\langle a b c \mapsto 123, \text { def } \mapsto 456\rangle\rangle \\
& x_{4}=\langle\langle\langle g h i \mapsto 789, j k l \mapsto 101112\rangle\rangle, \\
\text { array } ?(X)=\text { true } & \\
\text { array } ?\left(x_{2}\right)=\text { true } r & \text { 131415, jkl } \mapsto 161718\rangle\rangle\rangle \\
\text { [collection by definition] }
\end{array}
$$

$$
\begin{array}{lr}
\operatorname{array} ?\left(x_{4}\right)=\text { true } & \text { [collection of maps] } \\
\text { array } ?\left(x_{0}\right)=\text { false } & {[\text { Scalar }]} \\
\text { array? }\left(x_{1}\right)=\text { false } & {[\text { String }]} \\
\operatorname{array?~}\left(x_{3}\right)=\text { false } & {[\mathrm{Map}]}
\end{array}
$$

7.1.2 Append

The operation append will return a Collection with a Value added at a specified numeric Index.

```
_ Append \([\) Collection, \(V, \mathbb{N}]\)
    coll?, coll! : Collection
    \(v ?: V\)
    \(i d x ?: \mathbb{N}\)
    append_ : Collection \(\times V \times \mathbb{N} \mapsto\) Collection
    \(\# i d x ?=1\)
    coll \(!=\operatorname{append}(\) coll \(?, v ?, i d x ?) \bullet\)
        let coll' \(==\operatorname{front}(\{i: \mathbb{N} \mid i \in 0 . . i d x ?\} \mid \operatorname{coll} ?)^{\wedge} v\) ?
            coll \({ }^{\prime \prime}==\{j: \mathbb{N} \mid j \in i d x ? . . \#\) coll \(?\} \mid\) coll \(?\)
        \(=\operatorname{coll}^{\prime} \frown \operatorname{coll}^{\prime \prime} \Rightarrow\)
            \(\left(\right.\) front \(\left.\left.(\operatorname{coll})^{\prime}\right) \frown v ? \frown \operatorname{coll} l^{\prime \prime}\right) \wedge\)
            \((v ? \mapsto i d x ? \in \operatorname{coll}!) \wedge\)
            \((\# \operatorname{coll}!=\# \operatorname{coll} ?+1)\)
```

append results in the composition of coll' and coll ${ }^{\prime \prime}$ such that

$$
\operatorname{coll}!=\operatorname{coll} l^{\prime} \frown \operatorname{coll} l^{\prime \prime} \wedge i d x ? \mapsto v ? \in \operatorname{coll}!
$$

- coll' is the items in coll? up to and including $i d x$? but the value at $i d x$? is replaced with $v ?$ such that $i d x ? \mapsto \operatorname{coll} ?_{i d x} ? \notin \operatorname{coll}^{\prime}$
- $\operatorname{coll}^{\prime \prime}$ is the items in coll? from $i d x$? to $\# \operatorname{coll} ? \Rightarrow \operatorname{coll} ?_{i d x}$? $\in \operatorname{coll}^{\prime \prime}$

The following example illustrates these properties.

$$
\begin{aligned}
& X=\left\langle x_{0}, x_{1}, x_{2}\right\rangle \\
& \quad x_{0}=0 \\
& \quad x_{1}=\text { foo } \\
& \quad x_{2}=\langle a, b, c\rangle \\
& \quad v ?=b a r \\
& \operatorname{append}(X, v ?, 0)=\langle b a r, 0, \text { foo },\langle a, b, c\rangle\rangle \\
& \operatorname{append}(X, v ?, 1)=\langle 0, \text { bar }, \text { foo },\langle a, b, c\rangle\rangle
\end{aligned}
$$

```
append(X,v?,2)=\langle0, foo,bar, \langlea,b,c\rangle\rangle
append}(X,v?,3)=\langle0, foo,\langlea,b,c\rangle,bar
append}(X,v?,4)=\operatorname{append}(X,v?,3)\Longleftrightarrow3\not\in\operatorname{dom}
```


7.1.3 Remove

The inverse of the append Operations.

$$
\operatorname{remove}(\operatorname{coll}, i d x)=^{\sim} \operatorname{append}(\operatorname{coll}, i d x)
$$

The operation remove will return a Collection minus the Value removed from the specified Numeric Index

```
Remove \([\) Collection, \(\mathbb{N}]\)
coll? , coll! : Collection
    \(i d x ?: \mathbb{N}\)
    remove _ : Collection \(\times \mathbb{N} \rightarrow\) Collection
    \(\# i d x ?=1\)
    \(\operatorname{coll}!=\operatorname{remove}(\operatorname{coll} ?, i d x ?)\)
        let coll \({ }^{\prime}==\operatorname{front}(\{i: \mathbb{N} \mid i \in 0 . . i d x ?\} \mid \operatorname{coll} ?)\)
            \(\operatorname{coll}^{\prime \prime}==\operatorname{tail}(\{j: \mathbb{N} \mid j \in i d x ? . . \# \operatorname{coll} ?\} \upharpoonleft\) coll? \()\)
        \(=\operatorname{coll}^{\prime} \frown \operatorname{coll}^{\prime \prime} \Rightarrow\)
            \(\left(\operatorname{coll}^{{ }_{i d x} ?}{ }_{i d} \notin \operatorname{coll}^{\prime}\right) \wedge\)
            \(\left(\right.\) coll \(?_{i d x}\) ? \(\left.\notin \operatorname{coll}^{\prime \prime}\right) \wedge\)
            ( \(\#\) coll! \(=\# \operatorname{coll} ?-1)\)
```

such that

$$
\begin{array}{rlr}
X=\left\langle x_{0}, x_{1}, x_{2}\right\rangle & \\
\quad x_{0}=0 & \\
\quad x_{1}=\text { foo } & \\
x_{2}=b a z & {[0 \text { was removed from } X]} \\
\operatorname{remove}(X, 0) & =\langle\text { foo }, b a z\rangle & {[\text { foo was removed from } X]} \\
\operatorname{remove}(X, 1) & =\langle 0, b a z\rangle & {[\text { baz was removed from } X]} \\
\operatorname{remove}(X, 2) & =\langle 0, f o o\rangle & {[\text { nothing at } 3, \text { X unaltered }]}
\end{array}
$$

7.1.4 At Index

The operation atIndex will return the Value at a specified numeric index within a Collection or an empty Collection if there is no value at the specified index.

```
AtIndex \([\) Collection, \(\mathbb{N}]\)
    \(i d x ?: \mathbb{N}\)
    coll? : Collection
    atIndex _ : Collection \(\times \mathbb{N} \rightarrow V\)
    \(\# i d x ?=1\)
    \(\operatorname{coll}!=\) atIndex \((\operatorname{coll} ?, i d x ?)=(\) head \((i d x ? \upharpoonleft \operatorname{coll} ?)) \Longleftrightarrow i d x ? \in \operatorname{coll} ?\)
    coll \(!=\) atIndex \((\operatorname{coll} ?, i d x ?)=\langle \rangle \Longleftrightarrow i d x ? \notin \operatorname{coll} ?\)
```

Given the definition of the Collection and V free types
Collection $:==$ emptyColl \mid append $\langle\langle$ Collection \times Scalar \vee Collection $\vee K V \times \mathbb{N}\rangle\rangle$
$V::=$ Scalar \mid Collection $\mid K V$
The collection member coll $?_{i d x}$? $: V$ is implied from append accepting the argument of type Scalar \vee Collection $\vee K V \equiv V$ which means each Collection member is of type V. Given that extraction (1 _) returns a Collection,

```
seq X : Collection
    - 1 _ : P\mathbb{N}
```

in order for atIndex to return the collection member without altering its type, the first member of $a t I d x^{\prime}$ must be returned, not $a t I d x^{\prime}$ itself.

$$
\begin{aligned}
& \text { atIdx } x^{\prime}: \text { Collection } \\
& \text { coll }!, \text { coll } ?_{i d x} ?: V \\
& \text { atIdx } x^{\prime}=(i d x ? \upharpoonleft \text { coll } ?) \Rightarrow\left\langle{\text { coll } ?_{i d x} ?}\right\rangle \\
& \text { coll }!=\text { head }\left(\text { atId }^{\prime}\right)=\text { coll } ?_{i d x} ?
\end{aligned}
$$

The head call is made possible by restricting $i d x$? to be a single numeric value.

```
idx?,idx' : \mathbb{N}
    #idx?=1\bullet(idx?\ coll? ) = \langlecoll? idx? }\rangle
        (head(idx?\upharpoonleft coll?)) = coll? }\mp@subsup{}{idx}{}\mathrm{ ? [expected return given idx?]
```



```
            (head (idx' \upharpoonleft coll?)) = coll? }\mp@subsup{i}{id\mp@subsup{x}{i}{\prime}}{}\quad[\mathrm{ unexpected return given idx']
```

Additionally, if the provided $i d x ? \notin \operatorname{coll} ?$ then an empty Collection will be returned given that head must be passed a non-empty Collection.

$$
\begin{aligned}
& \text { head }: \operatorname{seq}_{1} X \rightarrow X \\
& \hline i d x ? \notin \operatorname{coll} ? \Rightarrow(i d x ? \upharpoonleft \text { coll } ?)=\langle \rangle \neg \operatorname{seq}_{1}
\end{aligned}
$$

The properties of atIndex are illustrated in the following examples.

$$
X=\left\langle x_{0}, x_{1}, x_{2}\right\rangle
$$

$$
\begin{gathered}
x_{0}=0 \\
x_{1}=f o o \\
x_{2}=\langle a, b, c\rangle \\
\text { atIndex }(X, 0)=0 \\
\text { atIndex }(X, 1)=\text { foo } \\
\text { atIndex }(X, 2)=\langle a, b, c\rangle \\
\text { atIndex }(X, 3)=\langle \rangle
\end{gathered}
$$

$$
\begin{array}{r}
{\left[\text { head }\left(\left\langle x_{0}\right\rangle\right)\right]} \\
{\left[\text { head }\left(\left\langle x_{1}\right\rangle\right)\right]} \\
{\left[\operatorname{head}\left(\left\langle x_{2}\right\rangle\right)\right]} \\
{\left[3 \notin X \Rightarrow x_{3} \notin X\right]}
\end{array}
$$

7.1.5 Update

The operation update will return a Collection coll! which is the same as the input Collection coll? except for at index $i d x$?. The existing member coll $?_{i d x}$? is replaced by the provided Value v ? at $i d x$? in coll! such that

$$
i d x ? \mapsto v ? \in \operatorname{coll}!\wedge i d x ? \mapsto \operatorname{coll} ?_{i d x} ? \notin \operatorname{coll}!
$$

which is equivalent to remove \gg append

$$
\text { update }(\text { coll } ?, v ?, i d x ?) \equiv \operatorname{append}(\operatorname{remove}(\operatorname{coll} ?, i d x ?), v ?, i d x ?)
$$

The functionality of update is further explained in the following schema.

```
_Update[Collection, \(V, \mathbb{N}]\)
    \(i d x ?: \mathbb{N}\)
    coll?, coll!: Collection
    \(v ?: V\)
    update _ : Collection \(\times V \times \mathbb{N} \rightarrow\) Collection
    \(1=\# i d x\) ?
    coll \(!=\) update \((\operatorname{coll} ?, v ?, i d x ?)\)
        let coll' \(==\{i: \mathbb{N} \mid i \in 0 . . i d x ?\} \upharpoonleft\) coll?
        \(\operatorname{coll}^{\prime \prime}==\) head \(\left(\text { coll }^{\prime}\right)^{\frown} v ?\)
        \(\operatorname{coll}^{\prime \prime \prime}==\{j: \mathbb{N} \mid j \in i d x ?+1 . . \#\) coll \(?\} \mid\) coll \(?\)
        \(=\operatorname{coll}^{\prime \prime} \frown \operatorname{coll}^{\prime \prime} \Rightarrow\)
            \(\left(\right.\) append \(\left(\right.\) remove \(\left.\left.\left(\operatorname{coll}^{\prime}, i d x ?\right), v ?, i d x ?\right) \frown \operatorname{coll}^{\prime \prime}\right) \wedge\)
        \((v ? \mapsto i d x ? \in \operatorname{coll}!) \wedge\)
        \((\# \operatorname{coll}!=\#\) coll \(?) \wedge\)
```

The value which previously existed at $i d x ? \in \operatorname{coll} ?$ is replaced with $v ?$ to result in coll!

- coll' is the items in coll? up to and including $i d x$?
- coll $^{\prime \prime}$ is the items in coll? except the item at $i d x$? has been replaced with $v ?$
- coll'" is the items in coll $?$ from $i d x ?+1$ to $\# \operatorname{coll} ? \Rightarrow \operatorname{coll}^{\prime} ?_{i d x}$? $\notin \operatorname{coll}^{\prime \prime}$

The following example illustrates these properties.

```
\(X=\left\langle x_{0}, x_{1}, x_{2}\right\rangle\)
    \(x_{0}=0\)
    \(x_{1}=\) foo
    \(x_{2}=\langle a, b, c\rangle\)
    \(v ?=b a r\)
\(\operatorname{update}(X, v ?, 0)=\langle\) bar, foo, \(\langle a, b, c\rangle\rangle\)
\(\operatorname{update}(X, v ?, 1)=\langle 0, b a r,\langle a, b, c\rangle\rangle\)
update \((X, v ?, 2)=\langle 0\), foo, bar \(\rangle\)
update \((X, v ?, 3)=\langle 0\), foo, \(\langle a, b, c\rangle, b a r\rangle\)
\(\operatorname{update}(X, v ?, 4)=\operatorname{append}(X, v ?, 3)=\operatorname{update}(X, v ?, 3) \Longleftrightarrow 3 \notin \operatorname{dom} X\)
```


7.2 Key Value Pairs

Operations which expect a Map $M=\left\langle\left\langle k_{i} v_{k_{i}} . . k_{n} v_{k_{n}} . . k_{j} v_{k_{j}}\right\rangle\right\rangle$

7.2.1 Map?

The operation map? will return a boolean which indicates if the passed in argument is a $K V$

$$
\begin{aligned}
& M a p ?[V] \\
& m ?: V \\
& \text { bol! : Boolean } \\
& \text { map } ?_{-}: V \rightarrow \text { Boolean } \\
& \text { bol }!=\operatorname{map} ?(m ?) \bullet \text { bol }!=\text { true } \Longleftrightarrow m ?: K V \Rightarrow V \backslash(\text { Scalar, Collection })
\end{aligned}
$$

where $V \backslash(S c a l a r$, Collection $)$ is used to indicate that m ? is of type V

$$
V::=\text { Scalar } \mid \text { Collection } \mid K V
$$

but in order for bol $!=$ true, m ? must not be of type Scalar \vee Collection such that

$$
\begin{aligned}
X= & \left\langle\left\langle x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle\right\rangle \\
& x_{0}=0 \\
& x_{1}=\text { foo } \\
& x_{2}=\langle b a z, q u x\rangle \\
& x_{3}=\langle\langle a b c \mapsto 123, \text { def } \mapsto 456\rangle\rangle
\end{aligned}
$$

$$
\begin{array}{lr}
x_{4}=\langle\langle\langle g h i \mapsto 789, j k l \mapsto 101112\rangle,,\langle\langle g h i \mapsto 131415, j k l \mapsto 161718\rangle\rangle\rangle \\
\text { map } ?(X)=\text { true } & \text { [KV by definition] } \\
\text { map } ?\left(x_{3}\right)=\text { true } & {[\mathrm{KV}]} \\
\text { map } ?\left(x_{2}\right)=\text { false } & \text { [Collection] } \\
\operatorname{map} ?\left(x_{4}\right)=\text { false } & \text { [Collection of maps] } \\
\operatorname{map} ?\left(x_{0}\right)=\text { false } & \text { [Scalar] } \\
\operatorname{map} ?\left(x_{1}\right)=\text { false } & {[\text { String }]}
\end{array}
$$

7.2.2 Associate

The operation associate establishes a relationship between k ? and v ? at the top level of m !.

```
-Associate \([K V, K, V]\)
    \(m ?, m!, m^{\prime}: K V\)
    \(k ?: K\)
    \(v ?: V\)
    associate \(\quad: ~ K V \times K \times V \mapsto K V\)
    \(m!=\operatorname{associate}(m ?, k ?, v ?) \bullet\)
        let \(m^{\prime}==m ? \notin k ? \Rightarrow\)
            \(\left(\operatorname{dom} m^{\prime}=\operatorname{dom}(m ? \backslash k ?)\right) \wedge\)
            \(\left(m ? \backslash m^{\prime}=k ? \Longleftrightarrow k ? \in m ?\right) \wedge\)
            \(\left(m ? \backslash m^{\prime}=\emptyset \Longleftrightarrow k ? \notin m ? \Rightarrow m ?=m^{\prime}\right)\)
        \(=\langle\langle k ? \mapsto v ?\rangle\rangle \cup m^{\prime}\)
```

This implies that any existing mapping at $k ? \in m$? will be overwritten by associate but an existing mapping is not a precondition.

$$
\begin{aligned}
& \left(k ?, m ?_{k ?}\right) \in m ? \vee\left(k ?, m ?_{k ?}\right) \notin m ? \\
& \left(k ?, m ?_{k ?}\right) \notin m! \\
& (k ?, v ?) \in m! \\
& m!=\operatorname{associate}(m ?, k ?, v ?)
\end{aligned}
$$

associate does not alter any other mappings within m ? and this property is illustrated by the definition of local variable m^{\prime}

$$
\begin{aligned}
& m^{\prime}: K V \mid m^{\prime}=m ? \notin k ? \Rightarrow m^{\prime} \triangleleft(m ? \backslash k ?) \\
& \operatorname{dom} m ?=\left\{k_{i}: K \mid 0 . . \# m ? \bullet k_{i} \in m ? \wedge 0 \leq i \leq \# m ?\right\} \\
& \operatorname{dom} m^{\prime}=\left\{k_{i}^{\prime}: K \mid 0 . \# m^{\prime} \bullet k_{i}^{\prime} \in m ? \wedge k_{i}^{\prime} \neq k ? \wedge 0 \leq i \leq \# m^{\prime}\right\} \\
& \operatorname{dom} m^{\prime}=\operatorname{dom} m ? \Longleftrightarrow k ? \notin m ? \Rightarrow \forall k_{i} \in m ? \mid k_{i} \neq k ? \\
& \# m^{\prime}=\# m ? \Longleftrightarrow k ? \notin m ? \\
& \# m^{\prime}=\# m ?-1 \Longleftrightarrow k ? \in m ?
\end{aligned}
$$

and its usage within the definition of associate.

$$
\begin{aligned}
& m!=m ? \cup\langle\langle k ? \mapsto v ?\rangle\rangle \Rightarrow k ? \notin m ? \\
& m!=m^{\prime} \cup\langle\langle k ? \mapsto v ?\rangle\rangle \Rightarrow m^{\prime} \neq m ? \wedge k ? \in m ?
\end{aligned}
$$

The following examples demonstrate the intended functionality of associate.

$$
\begin{aligned}
& M=\left\langle\left\langle k_{0} v_{k_{0}}, k_{1} v_{k_{1}}\right\rangle\right\rangle \\
& \quad k_{0}=a b c \wedge v_{k_{0}}=123 \\
& \quad k_{1}=\operatorname{def} \wedge v_{k_{1}}=x y z \mapsto 456 \\
& \text { associate }(M, b a z, \text { foo })=\langle\langle a b c \mapsto 123, \operatorname{def} \mapsto x y z \mapsto 456, b a z \mapsto f o o\rangle\rangle \\
& \text { associate }(M, a b c, 321)=\langle\langle a b c \mapsto 321, \text { def } \mapsto x y z \mapsto 456\rangle
\end{aligned}
$$

7.2.3 Dissociate

The operation dissociate will remove some $k \mapsto v$ from $K V$ given $k \in K V$

$$
\begin{aligned}
& \text { Dissociate }[K V, K]_{m ?, m!: K V} \begin{array}{l}
k ?: K \\
\text { dissociate }_{-}: K V \times K \rightarrow K V \\
m!=\text { dissociate }(m ?, k ?) \bullet m!=m ? \notin k ? \Rightarrow \\
\quad(\text { dom } m!=\operatorname{dom}(m ? \backslash k ?)) \wedge \\
\quad(m ? \backslash m!=k ? \Longleftrightarrow k ? \in m ?) \wedge \\
\quad(m ? \backslash m!=\emptyset \Longleftrightarrow k ? \notin m ? \Rightarrow m ?=m!) \wedge \\
\quad\left(\left(k ?, m ?_{k ?}\right) \notin m!\right)
\end{array} \\
& \hline
\end{aligned}
$$

such that every mapping in m ? is also in m ! except for $k ? \mapsto m ?{ }_{k ?}$.

$$
\begin{array}{lr}
M=\left\langle\left\langle k_{0} v_{k_{0}}, k_{1} v_{k_{1}}\right\rangle\right. & \\
\quad k_{0}=a b c \wedge v_{k_{0}}=123 & {\left[k_{0} v_{k_{0}}=a b c \mapsto 123\right]} \\
k_{1}=\operatorname{def} \wedge v_{k_{1}}=x y z \mapsto 456 & {\left[k_{1} v_{k_{1}}=\operatorname{def} \mapsto x y z \mapsto 456\right]} \\
\text { dissociate }(M, a b c)=\langle\langle d e f \mapsto x y z \mapsto 456\rangle\rangle & \\
\text { dissociate }(M, \operatorname{def})=\langle\langle a b c \mapsto 123\rangle\rangle & \\
\operatorname{dissociate}(M, x y z)=M & {[x y z \notin M]}
\end{array}
$$

7.2.4 At Key

The operation atKey will return the Value v at some specified Key k.

```
AtKey \([K V, K]\)
    \(m ?: K V\)
    \(v!: V\)
    \(k\) ? : K
    atKey_: \(K V \times K \rightarrow V\)
    \(v!=a t K e y(m ?, k ?) \bullet\)
            let coll \(==\left((\operatorname{seq} m ?) \upharpoonright\left(k ?, m ?_{k ?}\right)\right) \Rightarrow\left\langle\left(k ?, m ?_{k ?}\right)\right\rangle \Longleftrightarrow k ? \in \operatorname{dom} m ?\)
    \(=\left(\right.\) second \((\) head \((\) coll \(\left.)) \Longleftrightarrow k ? \mapsto m ?_{k ?} \in \operatorname{coll}\right) \vee\)
    \((\emptyset \Longleftrightarrow k ? \notin \operatorname{dom} m ?)\)
```

In the schema above, coll is the result of filtering for $\left(k ?, m ?_{k}\right.$? $)$ within seq $m ?$. If the mapping was in the original m ?, it will also be in the sequence of mappings. This means we can filter over the sequence to look for the mapping and if found, it is returned as $\left\langle\left(k ?, m ?_{k ?}\right)\right\rangle$. To return the mapping itself, head (coll) is used to extract the mapping such that the value mapped to k ? can be returned.

$$
v!=\operatorname{atKey}(m ?, k ?)=\operatorname{second}(\operatorname{head}(\operatorname{coll}))=m ?_{k ?} \bullet m ?_{k ?}: V \Longleftrightarrow k ? \in \operatorname{dom} m ?
$$

The following examples demonstrate the properties of atKey

$$
\begin{aligned}
& M=\left\langle\left\langle k_{0} v_{k_{0}}, k_{1} v_{k_{1}}\right\rangle\right\rangle \\
& \quad k_{0}=a b c \wedge v_{k_{0}}=123 \\
& \quad k_{1}=\operatorname{def} \wedge v_{k_{1}}=x y z \mapsto 456 \\
& \text { atKey }(M, a b c)=123 \\
& \text { atKey }(M, \text { def })=x y z \mapsto 456 \\
& \text { atKey }(M, \text { foo })=\emptyset
\end{aligned}
$$

7.3 Utility

Operations which are useful in many Statement processing contexts.

7.3.1 Map

The map operation takes in a function $f n$?, Collection coll? and additional Arguments args? (as necessary) and returns a modified Collection coll! with members $f n!{ }_{n}$. The ordering of coll? is maintained within coll!

Above, $f n!_{n}$ is introduced to handle the case where $f n$? only requires a single argument. Additional arguments may be necessary but if they are not $(\operatorname{args} ?=$ $\emptyset)$ then only coll $?_{n}$ is passed to $f n ?$.

$$
X=\langle 1,2,3\rangle
$$

$$
\operatorname{map}(\text { succ }, X)=\langle 2,3,4\rangle \quad[\text { increment each member of } X]
$$

$$
\operatorname{map}(+, X, 2)=\langle 3,4,5\rangle \quad[\text { add } 2 \text { to each member of } X]
$$

7.3.2 Iso To Unix Epoch

The isoToUnix operation converts an ISO 8601 Timestamp (see the xAPI Specification) to the number of seconds that have elapsed since January 1, 1970

$$
\begin{aligned}
& \text { IsoToUnix_ } \\
& \text { Timestamp } \\
& \text { seconds }: \mathbb{N} \\
& \text { isoToUnix_ }_{-}: \mathbb{F}_{1} \rightarrow \mathbb{N} \\
& \hline \text { seconds }!=\text { isoToUnix (timestamp })
\end{aligned}
$$

$$
\begin{aligned}
& t s=2015-11-18 T 12: 17: 00+00: 00 \equiv 2015-11-18 T 12: 17: 00 Z \\
& \text { isoToUnixEpoch }(t s)=1447849020 \quad[\text { ISO } 8601 \rightarrow \text { Epoch time }]
\end{aligned}
$$

7.3.3 Timeunit To Number of Seconds

The operation toSeconds will return the number of seconds corresponding to the input Timeunit

Timeunit $::=$ second \mid minute \mid hour \mid day \mid week \mid month \mid year
such that the following schema defines toSeconds

$$
\begin{aligned}
& _\operatorname{Map}[(-\rightarrow-), \text { Collection, } V] \\
& f n ?:(->-) \\
& \text { args? : V } \\
& \text { coll?, coll!: Collection } \\
& \text { map_ : }\left(-\rightarrow{ }_{-}\right) \times \text {Collection } \times V \rightarrow \text { Collection } \\
& \operatorname{coll}!=\operatorname{map}(f n ?, \operatorname{coll} ?, \operatorname{args} ?) \bullet \\
& \langle\forall n: i . . j \in \operatorname{coll} ?| i \leq n \leq j \wedge j=\# \operatorname{coll} ? \bullet \\
& \exists_{1} f n!_{n}: V \mid f n!_{n}= \\
& \left(\text { fn } ?\left(\text { coll } ?_{n}, \operatorname{args} ?\right) \Longleftrightarrow \operatorname{args} ? \neq \emptyset\right) \vee \\
& \left.\left(f n ?\left(\operatorname{coll} ?_{n}\right) \Longleftrightarrow \operatorname{args} ?=\emptyset\right)\right\rangle \Rightarrow f n!_{i} \frown f n!_{n} \frown f n!_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ToSeconds }[\text { Timeunit }] \\
& t ?: \text { Timeunit } \\
& \text { toSeconds }_{-}: \text {Timeunit } \rightarrow \mathbb{N} \\
& \text { toSeconds }(t ?)=1 \Longleftrightarrow t ?=\text { second } \\
& \text { toSeconds }(t ?)=60 \Longleftrightarrow t ?=\text { minute } \\
& \text { toSeconds }(t ?)=3600 \Longleftrightarrow t ?=\text { hour } \\
& \text { toSeconds }(t ?)=86400 \Longleftrightarrow t ?=\text { day } \\
& \text { toSeconds }(t ?)=604800 \Longleftrightarrow t ?=\text { week } \\
& \text { toSeconds }(t ?)=2629743 \Longleftrightarrow t ?=\text { month } \\
& \text { toSeconds }(t ?)=31556926 \Longleftrightarrow t ?=\text { year }
\end{aligned}
$$

7.4 Rate Of

The Operation rate $O f$ calculates the number of times something occurs within an interval of time given a unit of time.
rateOf(nOccurances, start, end, unit)

Where the output translates to: the rate of occurrence per unit within interval

- nOccurances is the number of times something happened and should be an Integer (called $n O$? bellow)
- start is an ISO 8601 timestamp which serves as the first timestamp within the interval
- end is an ISO 8601 timestamp which servers as the last timestamp within the interval
- unit is a String Enum representing the unit of time

This can be seen in the definition of rate $O f$ bellow.

```
RateOf[\mathbb{N,TIMESTAMP,TIMESTAMP,TIMEUNIT]}]
    nO?:\mathbb{N}
    rate!: \mathbb{Z}
    start?, end?: TIMEST AMP
    unit?: TIMEUNIT
    rateOf_: \mathbb{N}\timesTIMESTAMP }\times\mathrm{ TIMESTAMP }\timesTIMEUNIT ->\mathbb{Z
    rate! = rateOf(nO?, start?, end? , unit?)
        let interval == isoToUnix(end) - isoToUnix(start)
            unitS == toSeconds(unit?)
        =nO? }\div(\mathrm{ interval }\div\mathrm{ units }
```

The only other functionality required by rate $O f$ is supplied via basic arithmetic

$$
\begin{aligned}
& \text { start }=2015-11-18 T 12: 17: 00 Z \\
& \text { end }=2015-11-18 T 14: 17: 00 Z \\
& \text { unit }=\text { second } \\
& n O ?=10 \\
& \quad \text { start } N=\text { isoToUnix }(\text { start })=1447849020 \\
& \quad \text { end } N=\text { isoToUnix }(\text { end })=1447856220 \\
& \quad \text { interval }=\text { end } N-\text { Start } N=7200 \\
& \quad \text { unit } N=\text { toSeconds }(\text { unit })=60 \\
& 0.001389=\text { rateOf }(n O ?, \text { start, end, unit }) \Rightarrow 10 \div(7200 \div 60) \\
& 5=\text { rateOf }(n O ?, \text { start, end, hour }) \Rightarrow 10 \div(7200 \div 3600)
\end{aligned}
$$

8 Common Primitives

There will be many Primitives used within Algorithm definitions in DAVE but navigation into a nested Collection or $K V$ is most likely to be used across nearly all Algorithm definitions. In the following section, helper Operations are introduced for navigation into and back out of a nested Value. These Operations are then used to define the common Primitives centered around traversal of nested data structures ie. xAPI Statements and Algorithm State.

8.1 Traversal Operations

$$
\begin{aligned}
& \text { Get }[V, \text { Collection }] \\
& \text { in?, } v!: V \\
& \text { id? : Collection } \\
& \text { get }-V \times \text { Collection } \rightarrow V \\
& v!=\text { get }(\text { in? }, \text { id } ?) \bullet \\
& \quad=(\text { atIndex }(\text { in } ?, \text { head }(i d ?)) \Longleftrightarrow(\text { array } ?(\text { in? })=\text { true }) \wedge(\text { head }(\text { id } ?) \in \mathbb{N})) \vee \\
& \quad(\text { atKey }(\text { in } ?, \text { head }(i d ?)) \Longleftrightarrow(\text { array? }(\text { in } ?)=\text { false }) \wedge(\text { map } ?(\text { in } ?)=\text { true }))
\end{aligned}
$$

- retrieval of a V located at $i d$? within $i n$? where $i n$? can be a Collection or $K V$

```
Merge \([(V, V)\), Collection \(]\)
parent?, child?, parent! : V
at? : Collection
merge \(\quad:(V \times V) \times\) Collection \(\longrightarrow V\)
parent! \(=\operatorname{merge}((\) parent \(?\), child? \(), a t ?) \bullet\)
            \(=(\) associate \((\) parent \(?\), head (at? \()\), child? \()\)
            \(\Longleftrightarrow \operatorname{map} ?(\) parent \(?)=\) true \() \vee\)
            (update(parent?, child?, head(at?))
            \(\Longleftrightarrow(\) array \(?(\) parent \(?)=\) true \() \wedge(\) head \((\) at \(?) \in \mathbb{N}))\)
```

- Updating of parent? to include child? at location indicated by head(at?)

```
\(\_\operatorname{Conj}[V, V]\)
    parent?, data?: V
    conj!: Collection
    conj \(-V \times V \longrightarrow\) Collection
    \(\operatorname{conj}!=\operatorname{conj}(\) parent \(?\), data? \() \bullet\)
        let \(j==\) first(last(parent? ))
                            parent \(?_{\text {coll }}==\operatorname{append}(\langle \rangle\), parent \(?, 0)\)
        \(=(\operatorname{append}(\) parent \(?\), data?,\((j+1)) \Longleftrightarrow\) array \(?(\) parent \(?)=\) true \() \vee\)
            \(\left(\operatorname{append}\left(\right.\right.\) parent \(?_{\text {coll }}\), data?,\(\left.(j+1)\right) \Longleftrightarrow \operatorname{array}(\) parent \(?)=\) false \()\)
```

- conj! is a collection with data? at the last index conj! ${ }_{j}=d a t a$?.

8.2 Traversal Primitives

The helper Operations defined above are used to describe the traversal of a heterogeneous nested Value. In the following subsections, examples which demonstrate the functionality of Primitives will be passed X as in?.

$$
\begin{aligned}
X= & \left\langle x_{0}, x_{1}, x_{2}\right\rangle \\
x_{0} & =t r u e \\
x_{1}= & \langle a, b, c\rangle \\
x_{2}= & \langle\langle\text { foo } \mapsto\langle\langle b a r \mapsto b u z, x \mapsto y, z \mapsto\langle 3,2,1\rangle\rangle\rangle\rangle \\
f n!= & f n\left(X_{\left\langle\text {path? } ?_{i} . . p a t h ?_{j-1}\right\rangle}, v ?\right) \bullet \\
& \left.\forall X_{\left\langle\text {path? } ?_{i} . . \text { path } ?_{j-1}\right\rangle} \wedge v ? \mid \text { fn }!=Z Z Z \quad \text { [always return } Z Z Z\right]
\end{aligned}
$$

8.2.1 Get In

Collection and KV have different Fundamental Operations for navigation into, value extraction from and application of updates to. Navigation into an arbitrary Value without concern for its type is a useful tool to have and has been defined as the Primitive getIn.

$$
\begin{aligned}
& \text { GetIn[V, Collection] } \\
& \text { Get, Recur } \\
& \text { in?, atPath!: V } \\
& \text { path?: Collection } \\
& \text { getIn_: } V \times \text { Collection } \rightarrow V \\
& \text { getIn }=\left\langle\text { get } t_{-} \text {,recur }\right\rangle_{-}^{\#}{ }^{\text {path?-1 }} \\
& \text { atPath }=\operatorname{getIn}(i n ?, \text { path?) • } \\
& \forall n: i . . j-1 \bullet j=\operatorname{first}(\operatorname{last}(\text { path? })) \Rightarrow \operatorname{first}\left(j, \text { path }_{j}\right) \mid \exists \operatorname{down}_{n} \bullet \\
& \text { let path? }{ }_{n}==\operatorname{tail}(\text { path? })^{n-i} \\
& \operatorname{down}_{i}==\operatorname{get}\left(\mathrm{in} ?, \text { path }_{n}\right) \Rightarrow \\
& \text { atIndex(in?, head(path?)) } \vee \\
& \operatorname{atKey}(\text { in? }, \operatorname{head}(\text { path? })) \Longleftrightarrow n=i \\
& \text { down }_{n}==\operatorname{recur}\left(\text { down }_{i}, \text { path }_{n},{ }_{n}, \text { get }_{-}\right)^{j-1} \\
& \operatorname{down}_{j-1}==\operatorname{get}\left(\text { down }_{n}, \text { path }{ }_{n}\right) \Longleftrightarrow n=j-2 \\
& \text { atPath! }=\operatorname{down}_{j}=\operatorname{get}\left(\text { down }_{j-1}, \text { path }_{n}\right) \bullet \\
& \text { path }_{n} \equiv(\text { path } ? 1 j) \Rightarrow \\
& \langle j \mapsto \text { atIndex }(\text { path } ?, j)\rangle \Longleftrightarrow n=j-1
\end{aligned}
$$

The following examples demonstrate the functionality of the Primitive getIn

$$
\operatorname{getIn}(X,\langle 1,1\rangle)=b
$$

$$
\begin{aligned}
& \operatorname{getIn}(X,\langle 0\rangle)=\text { true } \\
& \operatorname{getIn}(X,\langle 2, \text { foo }, z, 0\rangle)=3
\end{aligned}
$$

Additionally, the propagation of an update, starting at some depth within a passed in Value and bubbling up to the top level, such that the update is only applied to values along a specified path as necessary, is also a useful tool to have. The following sections introduce Primitives which address performing these types of updates and ends with a summary of the functional steps described in the sections below. replace $A t$ is introduced first and serves as a point of comparison when describing the more abstract Primitives backProp and walkBack.

8.2.2 Replace At

The schema ReplaceAt uses the helper Operation merge to apply updates while climbing up from some arbitrary depth.

```
Replace \(A t[V\), Collection, \(V]\)
    GetIn, Merge
    in?, with? , out! : V
    path?: Collection
    replace \(A t_{-}: V \times\) Collection \(\times V \longrightarrow V\)
    replace \(A t=\left\langle\left\langle\text { getIn }_{-}, \text {merge }_{-}\right\rangle, \text {recur }_{-}\right\rangle^{\# \text { path }}{ }^{-1}\)
    out \(!=\operatorname{replace} A t(i n ?\), path?, with? \() \bullet\)
        \(\forall n: i . . j-1 \bullet(i=\operatorname{first}(\operatorname{head}(\) path? \())) \wedge(j=\operatorname{first}(\operatorname{last}(\) path? \())) \mid \exists\) parent \(_{n} \bullet\)
            let path? \({ }_{n}==\operatorname{tail}(\text { path? })^{n-i}\)
        parent \(_{n}=\operatorname{recur}\left(\text { parent }_{n-1}, \text { path }_{n}, \text { get }_{-}\right)^{j-1} \Rightarrow\)
                        let parent \(_{i}==\operatorname{getIn}\left(i n ?\right.\), path \(\left._{n}\right) \Longleftrightarrow n=i\)
                            parent \(_{i+1}==\operatorname{getIn}\left(\right.\) parent \(_{i}\), path \(\left._{n}\right) \Longleftrightarrow n=i+1\)
                            parent \(_{j-1}==\operatorname{getIn}\left(\right.\) parent \(_{j-2}\), path \(\left._{n}\right) \Longleftrightarrow n=j-1\)
            parent \(_{j}=\operatorname{getIn}\left(\right.\) parent \(_{j-1},(\) path \(\left.? \upharpoonleft j)\right)\)
        \(\forall z: p . . q \bullet(p=j-1) \wedge(q=i+1) \Rightarrow\)
            \(((z=p \Longleftrightarrow n=j-1) \wedge(z=q \Longleftrightarrow n=i+1)) \mid \exists\) child \(_{z} \bullet\)
            let path? \({ }_{\text {rev }}==\operatorname{rev}(\) path? \()\)
                path \(?_{z}==\operatorname{tail}\left(\text { path } ?_{\text {rev }}\right)^{p-z+1}\)
        child \(_{z}=\operatorname{recur}\left(\left(\right.\right.\) parent \(_{n}\), child \(\left._{n+1}\right)\), path \(_{z}\), merge \(\left._{-}\right)\)
            let child \(_{p}==\operatorname{merge}\left(\left(\right.\right.\) parent \(_{n}\), with \(\left.^{2}\right)\), path \(\left._{z}\right) \Longleftrightarrow z=p \Rightarrow n=j-1\)
            \(\operatorname{child}_{p+1}==\operatorname{merge}\left(\left(\right.\right.\) parent \(_{n}\), child \(\left._{p}\right)\), path \(\left._{z}\right) \Longleftrightarrow n=j-2 \wedge p=j-1\)
            \(\operatorname{child}_{q}==\operatorname{merge}\left(\left(\right.\right.\) parent \(\left._{n}, \operatorname{child}_{q+1}\right)\), path \(\left._{z}\right) \Longleftrightarrow z=q \Rightarrow n=i+1\)
    out \(!=\operatorname{merge}\left(\left(i n ?, \operatorname{child}_{q}\right), \operatorname{path} ?_{n}\right) \equiv \operatorname{merge}\left(\left(i n ?, \operatorname{child}{ }_{q}\right),(\right.\) path \(\left.? \upharpoonleft i)\right) \Longleftrightarrow(n=i=q-1)\)
```

- The range of indices $i . . j-1$ is used to describe navigation into some Value given path?
- Used to reference preceding level of depth
- keeps track of parent from previous steps
- The range of indices $p . . q$ is used to describe navigation up from target depth indicated by path?
- Used to reference current level of depth
- keeps track of child after the update has been applied
- The propagation of the update starts with child $_{p}$
- with? is added to parent ${ }_{j-1}$ at $\operatorname{get}($ path?,$\langle j\rangle)$
- parent nodes need to be notified of the change within their children

The following examples demonstrate the functionality of the Primitive replace At

$$
\begin{aligned}
& \text { replace } A t(X,\langle 2, \text { foo, } q\rangle, f n!)=\left\langle x_{0}, x_{1},\langle\langle\text { foo } \mapsto\langle\langle\text { bar } \mapsto b u z, x \mapsto y, q \mapsto Z Z Z\rangle\rangle\rangle\rangle\right\rangle \\
& \operatorname{replace} A t(X,\langle 2, \text { foo, } x\rangle, f n!)=\left\langle x_{0}, x_{1},\langle\langle\text { foo } \mapsto\langle\langle b a r \mapsto b u z, x \mapsto Z Z Z\rangle\rangle\rangle\rangle\right\rangle
\end{aligned}
$$

This Primitive can be made more general purpose by replacing merge with a placeholder $f n$? representing a passed in Operation or Primitive.

8.2.3 Back Prop

Being able to pass a function as an argument allows for, in this context, the arbitrary handling of how update(s) are applied at each level of nesting. The arbitrary $f n$? should expect a (Parent, Child) tuple and a Collection of indices as arguments and return a potentially modified version of the parent.

```
BackProp \(\left[V\right.\), Collection, \(\left.V,\left(~_{-} \rightarrow-\right)\right]\)
    GetIn
    in?, fnSeed? , out! : V
    path?: Collection
    fn?: ( \(-\rightarrow\) - \()\)
    backProp \(: ~: V \times\) Collection \(\times V \times(-\rightarrow-) \mapsto V\)
    backProp \(=\left\langle\left\langle\text { getIn } n_{-}, f n ?{ }_{-}\right\rangle \text {, recur }\right\rangle_{-}^{\# \text { path? }-1}\)
    out \(!=\) backProp \((i n ?\), path?, fnSeed?, fn? ) •
        \(\forall n: i . . j-1 \bullet(i=\operatorname{first}(\operatorname{head}(\operatorname{path} ?))) \wedge(j=\operatorname{first}(\operatorname{last}(\operatorname{path} ?))) \mid \exists\) parent \(_{n} \bullet\)
            let path \(?_{n}=\operatorname{tail}(\text { path? })^{n-i}\)
            parent \(_{n}=\) recur \(\left(\text { parent }_{n-1}, \text { path }_{n}, \text { get }_{-}\right)^{j-1} \Rightarrow\)
                let parent \(_{i}==\operatorname{getIn}\left(i n ?\right.\), path \(\left._{n}\right) \Longleftrightarrow n=i\)
                    parent \(_{i+1}==\operatorname{getIn}\left(\right.\) parent \(_{i}\), path \(\left._{n}\right) \Longleftrightarrow n=i+1\)
                    parent \(_{j-1}==\operatorname{getIn}\left(\right.\) parent \(_{j-2}\), path \(\left._{n}\right) \Longleftrightarrow n=j-1\)
            parent \(_{j}=\operatorname{getIn}\left(\right.\) parent \(_{j-1},\left(\right.\) path \(\left.\left.१_{1} j\right)\right)\)
    \(\forall z: p . . q \bullet(p=j-1) \wedge(q=i+1) \Rightarrow\)
                    \(((z=p \Longleftrightarrow n=j-1) \wedge(z=q \Longleftrightarrow n=i+1)) \mid \exists\) child \(_{z} \bullet\)
            let path? \({ }_{r e v}==\operatorname{rev}(\) path? \()\)
                path \(?_{z}=\operatorname{tail}\left(\text { path } ?_{\text {rev }}\right)^{p-z+1}\)
        \(\operatorname{child}_{z}=\operatorname{recur}\left(\left(\right.\right.\) parent \(_{n}\), child \(\left._{n+1}\right)\), path \(\left._{z}, f n ?\right)\)
            let child \(_{p}==\) fn? \(\left(\left(\right.\right.\) parent \(_{n}\), fnSeed \(\left.?\right)\), path \(\left._{z}\right) \Longleftrightarrow z=p \Rightarrow n=j-1\)
            child \(_{p+1}==\) fn? \(\left(\left(\right.\right.\) parent \(_{n}\), child \(\left._{p}\right)\), path \(\left._{z}\right) \Longleftrightarrow n=j-2 \wedge p=j-1\)
            \(\operatorname{child}_{q}==\) fn? \(\left(\left(\right.\right.\) parent \(_{n}\), child \(\left._{q+1}\right)\), path \(\left._{z}\right) \Longleftrightarrow z=q \Rightarrow n=i+1\)
    out \(!=f n ?\left(\left(i n ?, \operatorname{child}_{q}\right), \operatorname{path} ?_{n}\right) \equiv f n ?\left(\left(\right.\right.\) in \(\left.?, \operatorname{child}_{q}\right),(\) path \(\left.? \upharpoonleft i)\right) \Longleftrightarrow(n=i=q-1)\)
```

The schema ReplaceAt was introduced before BackProp so the process underlying both could be explicitly demonstrated and defined. The hope is that this made the introduction of the more abstract Primitive backProp easier to follow. A quick comparison of Replace At and BackProp reveals that the only major difference between them is $f n$? vs merge _. This implies the Primitive backProp can be used to replicate replace At.

$$
\begin{aligned}
& \text { replace } A t(\text { in } ?, \text { path } ?, \text { with } ?) \equiv \\
& \quad \text { backProp }(\text { in } ?, \text { path } ?, \text { fnSeed } ?, \text { merge_) } \Longleftrightarrow \text { with } ?=\text { fnSeed } ?
\end{aligned}
$$

Above highlights the arguments with? \wedge fnSeed? which serve the same purpose within backProp and replaceAt.

- Within ReplaceAt, the naming with? indicates its usage with respect to merge and the overall functionality of the Primitive
- Within BackProp, the naming $f n S e e d$? indicates that the usage of the variable within $f n$? is unknowable but this value will be passed to $f n$? on the very first iteration of the Primitive

In both cases, the variable is put into a tuple and passed to $f n$?.

$$
\operatorname{backProp}\left(X,\langle 2, \text { foo, } x\rangle, \text { fn! }, \text { merge }{ }_{-}\right)=\left\langle x_{0}, x_{1},\langle\langle f o o \mapsto\langle\langle b a r \mapsto b u z, x \mapsto Z Z Z\rangle\rangle\rangle\rangle\right\rangle
$$

The notable limitation of backProp are enumerated in the bullets bellow and the Primitive walkBack is introduced to address them.

- expectation of a seeding value ($f n S e e d ?$) as a passed in argument
- the general dismissal of the value $\left(\right.$ parent $\left._{j}\right)$ located at path? which is potentially being overwritten

8.2.4 Walk Back

In the Primitive walkBack, $f n S e e d$? is assumed to be the result of a function $f n ?_{\delta}$ which is passed in as an argument. $f n ?_{\delta}$ will be passed parent ${ }_{j}$ as an argument in order to produce fnSeed?. This Value will then be used exactly as it was in backProp given walkBack expects another function argument $f n ?_{n a v}$.

$$
w_{a l k B a c k}\left(i n ?, \text { path?, } f n ?_{\delta}, f n ?_{n a v}\right)
$$

In fact, the usage of $f n ?_{n a v}$ in WalkBack is exactly the same as the usage of $f n ?$ in BackProp as $f n ?_{\text {nav }}$ is passed to backProp as $f n$?.

```
_WalkBack[V,Collection, \((-\rightarrow-),(-\rightarrow-)]\)
```

\qquad

```
    BackProp
    in?, out! : V
    path?: Collection
    \(f n ?_{\delta}, f n ?_{\text {nav }}:\left(\rightarrow_{-}\right)\)
    walkBack \(-: V \times\) Collection \(\times\left(\__{-}\right) \times\left(\boldsymbol{H}_{-}\right) \mapsto V\)
    walkBack \(=\left\langle\right.\) getIn \(n_{-}, f n ?_{\delta-}\), backProp \(\left.{ }_{-}\right\rangle\)
    out \(!=\) walkBack \(\left(i n ?\right.\), path \(\left.?, f n ?_{\delta}, f n ?_{\text {nav }}\right)\)
    let \(f n S e e d==f n ?_{\delta}(\) getIn \((i n ?, p a t h ?))\)
    \(=\) backProp \(\left(i n ?\right.\), path?, fnSeed, fn? \({ }_{\text {nav }}\) )
```

By replacing $f n$ Seed? with $f n ?_{\delta}$ as an argument

- walkBack can be used to describe predicate based traversal of in?
- walkBack can be used to update Values at arbitrary nesting within in? and at the same time describe how those changes affect the rest of $i n$?
walkBack serves as a graph traversal template Primitive whose behavior is defined in terms of the nodes within $i n$? and the interpretation of those nodes via $f n ?_{\delta}$ and $f n ?_{n a v}$. This establishes the means for defining Primitives which can make longitudinal updates as needed before making horizontal movements through some $i n$?. In order for backProp to be used in the same way, the required state must be managed by
- $f n_{n a v}$
- some higher level Primitive that contains backProp (see WalkBack)

This important difference means walkBack can be used to replicate backProp but the opposite is not always true.

$$
\begin{aligned}
& {\text { walkBack }\left(i n ?, \text { path } ?, f n ?_{\delta}, f n ?_{n a v}\right) \equiv}^{\quad \text { backProp }\left(i n ?, \text { path } ?, f n S e e d ?, f n ?_{n a v}\right)} \Longleftrightarrow \text { fnSeed? }=f n ?_{\delta}(\text { getIn }(i n ?, \text { path? }))
\end{aligned}
$$

This means replaceAt can also be replicated.

$$
\left.\begin{array}{l}
\text { replaceAt(in?, path?, with?) } \equiv \\
\quad(\text { backProp }(\text { in? }, \text { path } ?, \text { fnSeed } ?, \text { merge_) })
\end{array} \Longleftrightarrow \text { with } ?=\text { fnSeed } ?\right) \equiv .
$$

The following examples demonstrate the functionality of walkBack

$$
\begin{aligned}
& \text { walkBack }\left(X,\langle 0\rangle, \text { array? }{ }_{-}, \text {merge_ }\right)=\left\langle\text { false }, x_{1}, x_{2}\right\rangle \\
& {\operatorname{walkBack}\left(X,\langle 2, q u x\rangle, \text { fn }_{-}, \text {merge_ }\right)=\left\langle x_{0}, x_{1},\left(x_{2} \cup q u x \mapsto Z Z Z\right)\right\rangle}^{\operatorname{walkBack}\left(X,\langle 1,0\rangle, \text { succ }_{-}, \text {merge_ }\right)=\left\langle x_{0},\langle b, b, c\rangle, x_{2}\right\rangle}
\end{aligned}
$$

8.3 Summary

The following is a summary of the general process which has been described in the previous sections. The variable names here are NOT intended to be 1:1 with those in the formal definitions (but there is some overlap) and the summary utilizes the Traversal Operations defined at the start of the section.

1. navigate down into the provided value in? up until the second to last value $i n ?_{p a t h ?_{j-1}}$ as described by the provided path?
2. extract any existing data mapped to atIndex (path?, j) from the result of step 1

$$
\begin{aligned}
& \stackrel{\text { in } ?_{\text {path? }}: V}{\stackrel{\text { path } ? ~}{\Rightarrow} \Rightarrow \operatorname{path}_{j-1}} \cup(j, \text { atIndex }(\text { path } ?, j))
\end{aligned}
$$

3. create the mapping (atIndex(path?, j), in? ${ }_{\text {path? }}$) labeled here as args?
```
\(\operatorname{args} ?=\left(\right.\) atIndex \((\) path \(?, j)\), in \(\left.?_{p a t h ? ~}\right)\)
\(\stackrel{\text { args } ? \in \text { in? } \text { path }^{2}{ }_{j-1}}{ }\)
\(\operatorname{first}(\operatorname{args} ?)=\operatorname{atIndex}(\) path \(?, j)\)
```

4. pass $i n{ }^{p}{ }_{p a t h}$? to the provided function $f n$? to produce some output $f n$!

$$
f n!=f n ?(\operatorname{second}(\operatorname{args} ?))=f n ?\left(\text { in } ?_{\text {path? }}\right)
$$

5. replace the previous mapping args? within $i n ?_{p_{\text {path }}{ }_{j-1}}$ with $f n$! at atIndex $($ path $?, j)$
```
\(\operatorname{child}_{j}=\) first (args? \() \mapsto f n!\)
\(i n!?_{p_{\text {path }}^{j-1}}=\operatorname{merge}\left(\left(\right.\right.\) in \(_{\text {path }_{j-1}}\), fn! \()\), first \(\left.(\operatorname{args} ?)\right)\)
child \(_{j} \in\) in! \(?_{p a t h ?_{j-1}}\)
child \(_{j} \notin\) in \(_{\text {path }{ }_{j-1}} \Longleftrightarrow\) child \(_{j} \neq \operatorname{args}\) ?
\(\operatorname{args} ? \in \operatorname{in} ?_{{ }_{p a t h} ?_{j-1}}\)
\(\operatorname{args} ? \notin \operatorname{in}!?_{p_{p a t h}{ }_{j-1}} \Longleftrightarrow \operatorname{args} ? \neq\) child \(_{j}\)
```

6. retrace navigation back up from $i n!?_{p_{\text {path }}^{j_{j-1}}}$, updating the mapping at each path $?_{n} \in$ path? without touching any other mappings.

$$
\begin{aligned}
& \text { in! } \left.?_{p a t h ?_{j-1}} \notin \text { first(args?) }=i n ?_{p_{\text {ath }}{ }_{j-1}} \notin \text { first(args? }\right) \Longleftrightarrow \operatorname{args} ? \neq \operatorname{child}_{j} \\
& \operatorname{args} ?^{\neq \operatorname{child}_{j}} \Rightarrow \operatorname{second}(\operatorname{args} ?) \neq \operatorname{second}\left(\text { child }_{j}\right)
\end{aligned}
$$

7. return out! after the final update is made to $i n$?.

$$
\begin{aligned}
& \operatorname{child}_{i}=\text { atIndex }(\text { path } ?, i) \mapsto i n!?_{p a t h ?_{i}} \\
& \text { in! } ?_{p a t h ?_{i}}=\operatorname{merge}\left(\left(\text { in } ?_{p a t h ?_{i}}, i n!?_{p a t h ?_{i+1}}\right) \text {, atIndex }(\text { path } ?, i+1)\right) \\
& \text { out }!=\operatorname{merge}\left(\left(\text { in? }, \operatorname{second}\left(\operatorname{child}_{i}\right)\right), \text { first }\left(\text { child }_{i}\right)\right) \bullet \\
& \text { in? } \notin \text { head }(\text { path? })=\text { out }!~ \& h e a d(p a t h ?) \Rightarrow \\
& \forall(a, b) \in \operatorname{path} ? \bullet b=a t \operatorname{Index}(p a t h ?, a) \mid \exists a \bullet i n ?_{a}=o u t!_{a} \Longleftrightarrow a \neq \operatorname{head}(\text { path? })
\end{aligned}
$$

8.4 Replace At, Append At and Update At

In the summary of walkBack above, the update at the target location within $i n$? takes place at step 4 . The result of step $4, f n$!, will overwrite the mapping args such that $f n$! replaces $i n ?_{p a t h}$? due to $f n ?_{n a v}=m e r g e_{-}$. This results in the replacement of one mapping at each level of nesting such that the overall structure, composition and size of out! is comparable to $i n$? unless $f n ?_{\delta}$ dictates otherwise. While the functionality of $f n_{\text {nav }}$ has been constrained here to always be an overwriting process, the same constraint is not placed on $f n ?_{\delta}$.

8.4.1 Replace At

The Primitive replaceAt was first defined in terms of the Traversal Operations and then served as the starting point for abstracting away aspects of functionality and delegating their responsibility to some passed in function until WalkBack was reached. An alternate form of this formal definition is presented below such that replaceAt is defined in terms of walkBack.

```
_ Replace At \([V\), Collection, \(V]\)
    WalkBack, Merge
    in?, with?, out!, fn! \({ }_{\delta}: V\)
    path?: Collection
    \(f n_{\delta}: V \rightarrow V\)
    replace \(A t_{-}: V \times\) Collection \(\times V \longrightarrow V\)
    replaceAt \(=\left\langle\right.\) walkBack \(\left.{ }_{-}\right\rangle\)
    out \(!=\) replaceAt \((i n ?\), path \(?\), with \(?)=\) walkBack \(\left(i n ?, p a t h ?, f n_{\delta}\right.\), merge_ \()\)
        let \(f n!_{\delta}==f n_{\delta}(\operatorname{get} \operatorname{In}(\) in?, path? \())=\) with \(? \Rightarrow\)
            walkBack(in?, path?, fn \({ }_{\delta}\), merge_) \(\equiv\)
                    backProp(in?, path?, fn! \(!_{\delta}\) merge_) \(\equiv\)
                        backProp(in?, path?, with?, merge_)
```

- $f n_{\delta}$ is defined within ReplaceAt as it performs a very simple task; ignore getIn(in?, path?) and return with?
- Here, $f n_{\delta}$ represents one of the main general categories of update; replacement of a value such that the result of the replacement is in no way dependent upon the thing being replaced.

The following examples were pulled from the section containing the first version of ReplaceAt as they still hold true.

$$
\begin{aligned}
& \text { replace } A t(X,\langle 2, \text { foo, } q\rangle, f n!)=\left\langle x_{0}, x_{1},\langle\langle\text { foo } \mapsto\langle\langle b a r \mapsto b u z, x \mapsto y, q \mapsto Z Z Z\rangle\rangle\rangle\rangle\right\rangle \\
& \text { replace } A t(X,\langle 2, \text { foo }, x\rangle, f n!)=\left\langle x_{0}, x_{1},\langle\langle\text { foo } \mapsto\langle\langle b a r \mapsto b u z, x \mapsto Z Z Z\rangle\rangle\rangle\rangle\right\rangle
\end{aligned}
$$

8.4.2 Append At

In order to define the Primitive appendAt, the Traversal Operation conj is used. In order to demonstrate the usage of conj as $f n ?_{\delta}$ of walkBack, a syntax not yet formally defined in this document is defined. It is an extension of the shorthand $v a l_{\text {index }}=\operatorname{get}($ Val, index $)$ as seen in examples like

$$
\begin{aligned}
& \operatorname{conj}\left(x_{0}, \text { false }\right)=\langle\text { true }, \text { false }\rangle=\left\langle x_{0}, \text { false }\right\rangle \\
& \operatorname{conj}(X, X)=\left\langle x_{0}, x_{1}, x_{2},\left\langle x_{0}, x_{1}, x_{2}\right\rangle\right\rangle
\end{aligned}
$$

The following expands that usage to describe following some path? into a Collection or $K V$.

$$
\begin{aligned}
& X_{\text {path? }}=\operatorname{getIn}(X, p a t h ?) \\
& \hline X_{\langle 1\rangle}=x_{1}=\langle a, b, c\rangle \\
& X_{\langle 1,0\rangle}=a
\end{aligned}
$$

This syntax is used for the placeholder $X_{p a t h}$? so that the role of $f n ?_{\delta}$ can be demonstrated within the arguments passed to walkBack. This notation can be
used to describe how arguments passed to a top level function get used within component functions without writing the equivalent Z schema. This shorthand can also be used within Z schemas.

```
walkBack \(\left(X,\langle 1\rangle\right.\), map_ \(_{-}\left(\operatorname{conj}_{-}, X_{\langle 1\rangle}, a\right)\), merge \(\left.{ }_{-}\right)=\left\langle x_{0},\langle\langle a, a\rangle,\langle b, a\rangle,\langle c, a\rangle\rangle, x_{2}\right\rangle\)
walkBack \(\left(X,\langle 1\rangle, \operatorname{conj}_{-}\left(X_{\langle 1\rangle}, a\right)\right.\), merge \(\left.{ }_{-}\right)=\left\langle x_{0},\langle a, b, c, a\rangle, x_{2}\right\rangle\)
```

Additive updates are another common type of updating encountered when working with xAPI data. Conj is a derivative of \frown but scoped to DAVE and used to define the Primitive appendAt.

```
AppendAt \([V\), Collection, \(V]\)
    WalkBack, Conj, Merge
    in?, toEnd?, out! : V
    path?: Collection
    appendAt_ : \(V \times\) Collection \(\times V \mapsto V\)
    appendAt \(=\left\langle\right.\) walkBack \(\left._{-}\right\rangle\)
    out \(!=\operatorname{appendAt}(i n ?\), path \(?\), toEnd \(?) \equiv\)
        walkBack(in?, path?, conj_(in? \({ }_{\text {path? }}\), toEnd? \(^{\text {) }}\), merge_ \() \Rightarrow\)
        backProp(in?, path?, fn! \({ }_{\delta}\), merge_) \(\Longleftrightarrow\)
            \(f n!_{\delta}=f n ?_{\delta}\left(\right.\) in \(?_{\text {path? }}\), toEnd? \() \bullet\)
                \(f n ?_{\delta} \_\left(\text {in } ?_{p a t h ? ~}, \text { toEnd? }\right)=f n ?_{\delta} \leftrightarrow\left(\right.\) in \(\left.?_{p a t h ? ~}, t o E n d ?\right) \bullet\)
                conj_(in? \({ }_{p a t h ?}, t o E n d\) ) \()=\operatorname{conj}{ }_{-} \leftrightarrow\left(i n ?_{p a t h ?}, t o E n d ?\right) \Rightarrow\)
                        \(\left(f n ?_{\delta}=c o n j \_\right) \wedge\)
                        \(\left(f n!_{\delta} \neq \operatorname{conj}_{-}\left(i n ?_{p a t h}\right.\right.\), toEnd \(\left.)\right) \wedge\)
                    \(\left(f_{n}!_{\delta}=\operatorname{conj}\left(i n ?_{p a t h ?}\right.\right.\), toEnd? \(\left.)\right)\)
```

This schema features a new notation which highlights evaluation nuances.

- $f n ?_{\delta}$ is used to represent the function itself
- $f n ?_{\delta}-\left(i n ?_{p a t h ?}\right.$, toEnd? $)$ is used to represent the relationship between the function and the arguments it WILL be passed
- $f n!_{\delta} \equiv f n ?_{\delta}\left(i n ?_{p a t h ?}, t o E n d\right.$? $)$ is used to represent the output of $f n ?_{\delta}$ given the passed in arguments

Such that the following are all equivalent expressions.

```
appendAt(in?, path?,toEnd?) \equiv
    walkBack(in?, path?, fn ? , ,merge_) \equiv
    walkBack(in?, path?, conj_(in? path?,toEnd?),merge_) \equiv
    walkBack(in?, path?, fn? _ _ (in? path?,toEnd?),merge_) \equiv
        backProp(in?,path?, fn! ! ,merge_) \equiv
        backProp(in?, path?, conj(in? path?, toEnd?),merge_)
```

The following example demonstrates this usage.

$$
\begin{aligned}
& \text { walkBack }\left(X,\langle 1\rangle, \text { map }_{-}\left(\text {append }_{-}, X_{\langle 1\rangle}, a\right), \text { merge }{ }_{-}\right)=\left\langle x_{0},\langle\langle a, a\rangle,\langle b, a\rangle,\langle c, a\rangle\rangle, x_{2}\right\rangle \\
& \text { map_ }_{-}\left(\text {append }_{-}, X_{\langle 1\rangle}, a\right) \equiv \operatorname{map}_{-}\left(\text {append_}_{-}\left(X_{\langle 1, n\rangle}, a\right), X_{\langle 1\rangle}, a\right) \bullet n \in \operatorname{dom} X_{\langle 1\rangle}
\end{aligned}
$$

The following examples demonstrate the functionality of appendAt.

```
appendAt (X, <1\rangle,e) = \langlex 0, ,a,b,c,e\rangle, \mp@subsup{x}{2}{}\rangle
appendAt (X, <2\rangle, <1,2,3\rangle) = \langlex ( , , x1, , <x , , <1, 2, 3\rangle\rangle\rangle
appendAt (X, <0\rangle,bar ) = \langle\langlex , bar }\rangle,\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}
```


8.4.3 Update At

The Primitive update $A t$ does not make any assumptions about how the relationship between $\operatorname{getIn}(i n ?, p a t h ?)$ and $f n!_{\delta}$ is established. This makes it possible to define both replaceAt and appendAt using update At.

```
_UpdateAt \([V\), Collection, ( \(\quad \rightarrow-)]\)
    WalkBack, Merge
    in?, out! : V
    path?: Collection
    \(f n ?_{\delta}:\left(H_{-}\right)\)
    update \(A t_{-}: V \times\) Collection \(\times(-\rightarrow-) \mapsto V\)
    updateAt \(=\langle\) walkBack_ \(\rangle\)
    out \(!=u p d a t e A t\left(i n ?\right.\), path \(\left.?, f n ?_{\delta}\right)=\)
        walkBack(in?, path?, fn? \({ }_{\delta}\), merge \(\left.{ }_{-}\right) \Rightarrow\)
                        backProp(in?, path?, fn! \(!_{\delta}\), merge_ \(^{\text {- }}\)
```

- The item found at the target path $\operatorname{getIn}\left(i n ?\right.$, path?) is passed to $f n ?_{\delta}$ such that the calculation of the replacement $f n!_{\delta}$ CAN be dependent upon getIn(in?, path?).

The following examples demonstrate the functionality of the Primitive updateAt

$$
\begin{aligned}
& \text { update } \operatorname{At}\left(X,\langle 0\rangle, \operatorname{array} ?_{-}\right)=\left\langle\text {false, } x_{1}, x_{2}\right\rangle \\
& \operatorname{update} \operatorname{At}\left(X,\langle 1,0\rangle, f n ?_{\delta}-\left(X_{\langle 1,0\rangle}\right)\right)=\left\langle x_{0},\langle z, b, c\rangle, x_{2}\right\rangle \Longleftrightarrow f n ?_{\delta}\left(X_{\langle 1,0\rangle}\right)=z
\end{aligned}
$$

and the following shows how update $A t$ can be used to define appendAt

$$
\operatorname{appendAt}(i n ?, \text { path?,toEnd? }) \equiv \text { updateAt }(i n ?, \text { path?, conj_(in? path? }, \text { toEnd? }))
$$

and replaceAt.

9 Rate of Completions

As learners engage in activities supported by a learning ecosystem, they will build up a history of learning experiences. When the digital resources of that learning ecosystem adhere to a framework dedicated to supporting and understanding the learner, such as the Total Learning Architecture (TLA), the data produced by the learning ecosystem will contribute to each learner's digital footprint. One way that footprint can be made actionable is through analysis of trends and/or patterns of activity. The following Algorithm does exactly this but scoped to:

- events describing or asserting that a learner completed a learning activity or exercise.
- events which happened within some target window of time

9.1 Alignment to DAVE Algorithm Definition

The schema RateOfCompletions serves as the first formal definition of an Algorithm which implements the definition of a DAVE Algorithm presented in the section Algorithm Formal Definition(6.6) on page 32. RateOfCompletions is used to introduce the alignment between the generic components of Algorithm and their corresponding definitions within this domain specific use case. In general, all DAVE Algorithm definitions must reference the schema Algorithm and the schemas corresponding to the different components of Algorithm. Within RateOfCompletions, both Algorithm.algorithm.algorithmIter and ROCalgorithmIter are fully expanded for clarity. This is not a requirement of alignment schemas, but alignment schemas should feature:

- an expanded definition of the use case specific algorithmIter
- binding of the use case specific algorithmIter to Algorithm.algorithm.algorithmIter

Typically, an alignment schema would be defined after its component schemas but because RateOfCompletions is the first of its kind, it is featured first to introduce the notation by example and set the stage for the following component definitions. The alignments established in RateOfCompletions are further expanded upon within the corresponding definition of each individual component.

9.1.1 Components

Within each component definition, in order to connect the dots between

- Algorithm and its components
- RateOfCompletions and its components
the symbol \leadsto is used. This establishes that the constraints defined in the more generic component formal definitions apply to the schema being binded to. This is formalized within each of the RateOfCompletions component schemas via

$$
\begin{array}{|l}
\text { genericSchema.primitiveName }=\langle\text { body }\rangle \\
\hline\langle\text { body }\rangle \sim \text { localSchema.primitiveName }=\text { localSchema.primitiveChain }
\end{array}
$$

9.2 Formal Definition

The application of the notation described above to RateOfCompletions results in the following definition with respect to schemas

$$
\begin{aligned}
& \text { RateOfCompletions }::= \\
& \text { Algorithm }{ }_{9}^{\circ} \text { RateOfCompletions } \Rightarrow \\
& \\
& \left(\text { Init }{ }_{9} \text { RateOfCompletionsInit }\right) \wedge \\
& \\
& \left(\text { Relevant } ?_{\circ} \text { RateOfCompletionsRelevant } ?\right) \wedge \\
& \left(\text { Accept } ?_{9} \text { RateOfCompletionsAccept } ?\right) \wedge \\
& \left(\text { Step }{ }_{9}^{\circ} \text { RateO fCompletionsStep }\right) \wedge \\
& \\
& \left(\text { Result }{ }_{9}^{\circ} \text { RateOfCompletionsResult }\right)
\end{aligned}
$$

such that the $\langle b o d y\rangle$ within each of the generic schema definitions is substituted for the Primitive chain defined within each of the local schemas. Here, the components of RateOfCompletions use a naming scheme of Container + AlgorithmComponent but this pattern is not required. It is used here strictly for additional highlighting of the syntax introduced above for connecting the generic definition of an Algorithm to an Implementation of that methodology much like the concepts underlying Java Interfaces.

```
\DeltaRateOfCompletions[KV,Collection, KV]
Algorithm
RateOfCompletionsInit
RateO fCompletionsRelevant?
    RateO fCompletions Accept?
    RateOfCompletionsStep
    RateOfCompletionsResult
    rateOfCompletions_ : KV }\times\mathrm{ Collection }\timesKV->K
    state?,opt?, state!: KV
    S?: Collection
    Algorithm.algorithm.algorithmIter = <relevant? _, accept? _, step_\rangle
    ROCalgorithmIter = <RateOfCompletionsRelevant?.relevant? _,
                        RateOfCompletionsAccept?.accept? _,
                        RateOfCompletionsStep.step_>
    Algorithm.algorithm.algorithmIter_ ~ ROCalgorithmIter_ = 
            (Algorithm.algorithm.algorithmIter.relevant? _ ^
            RateOfCompletionsRelevant?.relevant? _)^
        (Algorithm.algorithm.algorithmIter.accept? _ ~
            RateOfCompletions Accept?.accept? _) ^
        (Algorithm.algorithm.algorithmIter.step_ }
            RateOfCompletionsStep.step_)
state! = rateOfCompletions(state?,S?,opt?) \equivalgorithm(state?,S?,opt?) \Longleftrightarrow
            (Algorithm.algorithm.init_ }~\mathrm{ RateOfCompletionsInit.init_) ^
            (Algorithm.algorithm.algorithmIter_ }\leadsto\mathrm{ ROCalgorithmIter_) ^
            (Algorithm.algorithm.result_ }\leadsto\mathrm{ RateOfCompletionsResult.result_)
```

- the . notation is used to reference components within a schema
- the \leadsto represents alignment between components of Algorithm and RateOfCompletions
- the Δ in the schema name indicates that RateOfCompletions alters the state space of Algorithm due to usage of \leadsto

9.3 Initialization

The first example of a component to component alignment is found within RateOfCompletionsInit which shows how the primitive RateO fCompletionsInit.init is bound to $\langle b o d y\rangle$ within Algorithm.algorithm.init. Specifically, the schema RateOfCompletionsInit uses the Primitive updateAt such that init can be used to establish the initialization logic.

9.3.1 Formal Definition

In the following, init $_{\delta}$ could have been a stand alone Operation referenced within RateOfCompletionsInit.

```
_ RateOfCompletionsInit \([K V]\)
    Init, Update At
    state? , state! : KV
    init_ : \(K V \rightarrow K V\)
    init \(_{\delta}: V \rightarrow K V\)
    Init.init \(=\langle\) body \(\rangle\)
    init \(=\left\langle\right.\) updateAt \(\left.t_{-}\right\rangle\)
    Init.init \(\leadsto\) init \(\Rightarrow\langle\) body \(\rangle \equiv\langle\) updateAt_ \(\rangle\)
    init \(_{\delta}!=\) init \(_{\delta}\left(\right.\) state \(\left.{ }_{\langle\text {roc }, \text { completions }\rangle}\right) \bullet\)
        \(=(\emptyset \Longleftrightarrow\langle\) roc, completions \(\rangle \notin\) state \(?) \vee\)
        \(\left(\right.\) state \({ }_{\langle r o c, \text { completions }\rangle} \Longleftrightarrow\langle\) roc, completions \(\rangle \in\) state? \()\)
    state \(!=\operatorname{init}(\) state \(?)=\) updateAt \(\left(\right.\) state \(?,\langle\) roc, completions \(\rangle\), init \(\left._{\delta}\right) \bullet\)
        \(=\left(\langle\langle\right.\) roc \(\mapsto\) completions \(\mapsto \emptyset\rangle\rangle \cup\) state \(? \Longleftrightarrow\) init \(\left._{\delta}!=\emptyset\right) \vee\)
        (state? \(\Longleftrightarrow\) init \(\left._{\delta}!\neq \emptyset\right)\)
```

The output of RateOfCompletionsInit.init is state! which can be one of two things given the definition of init $_{\delta}$

- state $!=\langle\langle r o c \mapsto$ completions $\mapsto \emptyset\rangle\rangle \cup$ state?
- state $!=$ state ?

This means that the result of any previous runs of rateOfCompletions will not be overwritten but if this is the first iteration of the Algorithm, the necessary storage location is established within the Algorithm State such that

- RateO fCompletionsStep.step can write its output to state! ${ }_{\text {roc, completions }\rangle}$
- RateOfCompletionsResult.result can read from state! \langle roc,completions \rangle
and by defining RateOfCompletionsInit.init in this way, it allows for chaining of calls to rate O fCompletion such that
- the Algorithm can pick back up from the result of a previous iteration
- Other Algorithms can use the result of rateOfCompletions within their processing
which highlights the importance of establishing a unique path for individual Algorithms to write their results to. The example path? of $\langle r o c$, completions \rangle is very simple but is sufficient for the current Algorithm. This path? can be made more complex to support more advanced init $_{\delta}$ definitions. For example, each run of rate O fCompletions could have its own unique subpath. In this scenario, init $_{\delta}$ could be updated to look for the most recent run of rate $O f$ Completions and use it as the seed state for the current iteration among other things.
- $\langle r o c$, completions, run 1\rangle
- 〈roc, completions, run 2\rangle

9.3.2 Big Picture

When Algorithms write to a unique location within an Algorithm State, high level Algorithms can be designed which chain together individual Algorithms such that the result of one is used to seed the next. Chaining together of Algorithms is a subject not yet covered within this report and its exact form is still under active development. It is mentioned here to highlight the ideal usage of Algorithm State in the context of init; Algorithm State is a mutable Map which serves as a storage location for a collection of Algorithm(s) to write to and/or read from such that an Algorithm can

- pick up from a previous iteration
- use the output of other Algorithm(s) to initialize the current state
- process quantities of data too large to store in local memory all at once

9.4 Relevant?

Given that the purpose of relevant? is to determine if the current Statement (stmt?) is valid for use within step of rateOfCompletions, the validation check itself can be implemented in several different ways but ideally, the predicate logic is expressed using the xAPI Profiles spec.

9.4.1 xAPI Profile Validation

The specification defines xAPI Statement Templates which feature a built in xAPI property predicate language for defining the uniquely identifying properties of an xAPI Statement. These requirements are used within validation logic aligned to/based off of the Statement Template Validation Logic defined in the spec. The formal definition of Statement Template validation logic is outside the scope of this document but the following basic type is introduced to represent an xAPI Statement Template

$$
\left[T E M P L A T E_{s t m t}\right]
$$

such that the following is an Operation definition for validation of an xAPI Statement stmt? against an xAPI Statement Template.

$$
\left[\begin{array}{l}
\text { ValidateStatement }\left[S T A T E M E N T, T E M P L A T E_{\text {stmt }}\right] \\
\text { stmt? : STATEMENT } \\
\text { template? : TEMPLATE } \text { stmt }^{\text {validateStmt }!\text { : Boolean }} \\
\text { validateStmt_ : STATEMENT } \times \text { TEMPLATE } \text { stmt } \rightarrow \text { Boolean } \\
\text { validateStmt }!=\text { validateStmt }(\text { stmt } ?, \text { template } ?)=\text { true } \vee \text { false }
\end{array}\right.
$$

This Operation can be composed with other xAPI Profile centered Operations to define more complex predicate/validation logic like:

- stmt? matches target xAPI Statement Template(s) defined within some xAPI Profile(s)
- stmt? matches pred (ie, any/none/etc.) xAPI Statement Template(s) defined within some xAPI Profile(s)
- stmt? matches target/pred xAPI Statement Template(s) within target/pred xAPI Pattern(s) defined within some xAPI Profile(s)

9.4.2 x API Predicates

In order to avoid brining in additional xAPI Profile complexity, the logic of Rate OfCompletionsRelevant? is implemented using predicates which correspond to checks which would happen during validateStmt given Statement Templates containing the following constraints.

- is the Object of the Statement an Activity?
- is the Verb indicative of a completion event?
- is Result.completion used to indicate completion?

In general, each of these Primitives navigates into a Statement to retrieve the value at a target path? and check it against the predicate defined in the schema. This generic functionality is defined as the Primitive stmtPred.

```
_StatementPredicate[STATEMENT, Collection, \(\left.\left(\sim_{-} \rightarrow-\right)\right]\)
    GetIn
    stmt? : STATEMENT
    path?: Collection
    fn \(n_{\text {pred }}\) ! : Boolean
    \(f n_{\text {pred }}\) ?: ( \(-\rightarrow\) - \()\)
    stmtPred \(: ~ S T A T E M E N T \times\) Collection \(\left.\times(-\rightarrow)_{-}\right) \rightarrow\) Boolean
    stmtPred \(=\left\langle\right.\) getIn_ \(\left.n_{-}, f n_{\text {pred }} ?\left(s t m t ?_{p a t h} ?\right)\right\rangle\)
    \(f n_{\text {pred }}!=s t m t \operatorname{Pred}\left(s t m t ?\right.\), path \(\left.?, f n_{\text {pred }}\right)\)
    \(=f n_{\text {pred }} ?(\) getIn \((\) stmt \(?\), path? \())\)
        \(=\) true \(\vee\) false
```

This Primitive covers the most basic kind of check performed when validating an xAPI Statement against an xAPI Statement Template; does the Statement property found at $s t m t ?_{\text {path }}$? adhere to the expectation(s) defined within the provided predicate. The next three schemas will define the statement predicates used within RateOfCompletionsRelevant? but these predicates could have been contained within some number of xAPI Statement Template(s).

```
ActivityObject? [ST AT EMENT]
    StatementPredicate
    stmt?: STATEMENT
    path?: Collection
    fn
    fn}\mp@subsup{n}{\mathrm{ pred - : V Boolean}}{
    activityObject? _ : STATEMENT -> Boolean
    activityObject? = <stmtPred_\rangle
    path? = <object,objectType\rangle
    fn}\mp@subsup{n}{\mathrm{ pred }}{}!=\mathrm{ activityObject? (stmt?)
        = stmtPred(stmt?, path?, fn nred}
        =fn
        =true \Longleftrightarrowstmt? path? = Activity }\vee
```

- Determine if the Object of stmt? is an Activity

```
_CompletionVerb? [STATEMENT]
    StatementPredicate
    stmt? : STATEMENT
    path?: Collection
    \(f n_{\text {pred }}\) ! : Boolean
    \(f n_{\text {pred }-}: V \rightarrow\) Boolean
    completionVerb? _ : STATEMENT \(\rightarrow\) Boolean
    completionVerb \(?=\left\langle\right.\) stmtPred \(\left.{ }_{-}\right\rangle\)
    path \(?=\langle v e r b, i d\rangle\)
    \(f n_{\text {pred }}!=\) completionVerb \(?(\) stmt \(?)\)
    \(=\operatorname{stmtPred}\left(\right.\) stmt \(?\), path?, n \(\left._{\text {pred }}\right)\)
    \(=f n_{\text {pred }}\left(\right.\) stmt \(\left.?_{\text {path? }}\right)\)
    \(=\) true \(\Longleftrightarrow{s t m t ?_{\text {path }} ?=}=\)
    http : //adlnet.gov/expapi/verbs/passed \(\vee\)
    https : //w3id.org/xapi/dod - isd/verbs/answered \(\vee\)
    http : //adlnet.gov/expapi/verbs/completed
```

- Determine if the Verb id within stmt? is one of
- passed
- answered
- completed
- List of target Verb ids can be expanded as needed

```
CompletionResult? [ST AT EMENT]
    StatementPredicate
    stmt? : STATEMENT
    path?: Collection
    \(f n_{\text {pred }}\) ! : Boolean
    fn \(n_{\text {pred }-: ~}\) V Boolean
    completionResult? _ : ST ATEMENT \(\rightarrow\) Boolean
    completionResult \(?=\langle\) stmtPred_ \(\rangle\)
    path \(?=\langle\) result, completion \(\rangle\)
    \(f n_{\text {pred }}!=\) completionResult? \((\) stmt \(?)\)
    \(=s t m t \operatorname{Pred}\left(s t m t ?\right.\), path \(?\), fn \(\left.n_{\text {pred }}\right)\)
    \(=f n_{\text {pred }}\left(s t m t ?_{\text {path }}\right)\)
    \(=\) true \(\Longleftrightarrow s t m t ?_{\text {path }}=\) true
```

- Determine if completion is set to true within result field of an xAPI Statement

9.4.3 Formal Definition

The xAPI Predicates defined above are used within RateOfCompletionsRelevant? to establish the logic which decides if stmt? is

- passed on to the next step
- discarded for the next Statement in the batch passed to rateOfCompletions

The schema prefix Ξ is used to indicate that here, relevant? does not modify state?. Regardless, in order for relevant? to return true

- The object of stmt? must be an activity
- The Verb of stmt? has an id which matches one of the target IDs
- The Result of stmt indicates that a completion happened

9.5 Accept?

The Accept? component of a DAVE Algorithm is a secondary validation check prior to the potential passing of stmt? off to Step. At this point, stmt? has been validated to be relevant to the execution of an Algorithm so the final check is based off of the current Algorithm State state?. In many cases this check will not be necessary but this step matters when the ability to process stmt? is dependent upon some property of state?. This component of an Algorithm could be used to establish the placeholder mapping within state! if it doesn't exist for the current stmt? but this can also be handled within step as done in the schema ProcessCompletionStatement defined later on.

```
\(\Xi\) RateOfCompletions Accept? [KV, ST ATEMENT]
Accept?
    state? : KV
    stmt? : STATEMENT
    accept! : Boolean
    fn pred \(: K V \times S T A T E M E N T \rightarrow\) Boolean
    accept? _ : KV \(\times\) STATEMENT \(\rightarrow\) Boolean
    Accept? .accept \(?=\langle\) body \(\rangle\)
    accept \(?=\left\langle\right.\) fn \(\left._{\text {pred }}-\right\rangle\)
    Accept? .accept? \(\sim\) accept \(? \Rightarrow\langle\) body \(\rangle \equiv\left\langle f n_{\text {pred }-\rangle}\right\rangle\)
    accept \(!=\operatorname{accept} ?(\) state \(?\), stmt \(?)\)
    \(=f n_{\text {pred }}(\) state \(?\), stmt? \()=\) true
```

The Algorithm rateOfCompletions does not need to check state? before passing stmt? to step so $f n_{\text {pred }}$ will always return true. If this was not the case, $f n_{\text {pred }}$ would be defined as a predicate describing the relationship between state? and stmt? which determines if true or false is returned. Additionally, if false would be returned, Accept can take the appropriate steps to ensure state! is updated such that accept? (state!, stmt?) = true .

9.6 Step

The actual processing of stmt? happens within step and may or may not result in an updated Algorithm State state!. In the case of rate OfCompletions, each call to step is expected to return an altered state such that state $!\neq$ state ? and the schema Rate $O f$ CompletionsStep is prefixed with Δ accordingly. The updated state! will either have an existing mapping for objectId \in state? altered or a completely new mapping for objectId added to state?.

9.6.1 Processing Summary

The execution of step can be summarized as:

1. parse the relevant information from stmt

- currentTime
- objectName
- objectId

2. resolve previous state (if it exists) given objectId
3. update the range of time to include currentTime if not already within the existing interval for objectId
4. update the counter tracking the number of times objectId has been in a stmt? passed to step
5. add objectName to the set of names associated with objectId if not already a member.

9.6.2 Helper Functions

The following Operations and Primitives are defined for abstracting the functionality of each process within step in order to reduce the noise within RateOfCompletionsStep.

```
_ParseCompletionStatement[ST ATEMENT]
    GetIn
    stmt? : ST ATEMENT
    currentTime : TIMEST AMP
    objectName, parseStmt! : KV
    objectId : STRING
    parseStmt_ : STATEMENT \(\longrightarrow K V\)
    parseStmt \(\left.=\left\langle\text { getIn }{ }_{-}, \text {associate }\right\rangle_{-}\right\rangle^{2}\)
    currentTime \(=\operatorname{getIn}(\operatorname{stmt} ?,\langle\) timestamp \(\rangle)\)
    objectName \(=\operatorname{getIn}(\) stmt \(?,\langle o b j e c t\), definition, name \(\rangle)\)
    objectId \(=\operatorname{getIn}(\) stmt \(?,\langle\) object,\(i d\rangle)\)
    parseStmt! = parseStmt(stmt?)
        let withTime \(==\) associate \((\langle\rangle\rangle\), currentT, currentTime \()\)
            withName \(=\) =associate (withTime, objName, objectName)
                \(=\operatorname{associate}(\) with Name, objId, objectId \() \Rightarrow\)
        \(\langle\langle\) current \(T \mapsto\) currentTime, objName \(\mapsto\) object \(N a m e\), objId \(\mapsto\) objectId \(\rangle\rangle\)
```

- parse timestamp, object name and object id from stmt?

ResolvePreviousCompletionState $[K V, K V]$ \qquad
GetIn
state?, parsed?, prevState! : KV
getPreviousState_ : $K V \times K V \rightarrow K V$
getPreviousState $=\left\langle\right.$ getIn n_{-}, getIn $\left.n_{-}\right\rangle$
objectId $=\operatorname{getIn}($ parsed?, objId $)$
prevState $!=$ getPreviousState $($ state $?$, parsed $?)=\operatorname{getIn}($ state $?,\langle$ roc, completions, objectId $\rangle)$

- look in state? for any previous record of objectId

```
_ IntervalValGiven[TIMESTAMP,TIMESTAMP( _ \(\rightarrow\) _ \()]\)
    IsoToUnix
    stmt \(_{t s}\), state \(_{t s}\), intervalValGiven! : TIMESTAMP
    \(f n_{\text {pred }}:(->-)\)
    \(f n_{\text {pred }}!: \mathbb{N}\)
    intervalValGiven_ : TIMESTAMP \(\times\) TIMESTAMP \(\times\left({ }_{-} \rightarrow-\right) \rightarrow\) TIMESTAMP
    intervalValGiven \(=\left\langle\right.\) isoToUnix \(_{-}\), isoToUnix \(\left._{-}, f n_{\text {pred }}^{-}\right\rangle\)
    \(n\) Seconds stmt \(=i s o\) ToUnix \(\left(\right.\) stmt \(\left._{t s}\right)\)
    \(n S e c o n d s_{\text {state }}=i s o T o U n i x\left(\right.\) state \(\left._{\text {ts }}\right)\)
    \(f n_{\text {pred }}!=f n_{\text {pred }}\left(n S e c o n d s_{\text {stmt }}, n\right.\) Seconds \(\left.s_{\text {state }}\right)\)
    intervalValGiven \(!=\) intervalValGiven \(\left(\right.\) stmt \(_{t s}\), state \(\left._{t s}, f n_{\text {pred }}\right)\)
    \(=\left(\right.\) stm \(_{t s} \Longleftrightarrow f n_{\text {pred }}!=n\) Seconds \(\left.s_{\text {stmt }}\right) \vee\)
    \(\left(\right.\) state \(\left._{t s} \Longleftrightarrow f n_{\text {pred }}!=n S e c o n d s_{\text {state }}\right)\)
```

- return stmt $t_{t s}$ or $s t a t e_{t s}$ based on result of $f n_{\text {pred }}$

```
    ReturnIntervalStart[TIMESTAMP,TIMESTAMP]
```

\qquad

```
    IntervalValGiven
    stmt \(_{t s}\), state \(_{t s}\), interval \(l_{\text {start }}\) : TIMESTAMP
    \(f n_{\delta}!: \mathbb{N}\)
    \(f n_{\delta}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}\)
    returnIntervalStart_ : TIMESTAMP \(\times\) TIMESTAMP \(\rightarrow\) TIMESTAMP
    returnIntervalStart \(\left.=\langle\text { intervalValGiven_}\rangle_{-}\right\rangle\)
    \(f n_{\delta}!=f n_{\delta}\left(n\right.\) Seconds \(_{s t m t}, n\) Seconds \(\left.s_{\text {state }}\right)\)
        \(=\left(n\right.\) Seconds \(s_{\text {stmt }} \Longleftrightarrow n\) Seconds \(_{\text {stmt }} \leq n\) Seconds \(\left._{\text {state }}\right) \vee\)
            \(\left(n S e c o n d s_{\text {state }} \Longleftrightarrow n S e c o n d s_{\text {stmt }}>n S e c o n d s_{\text {state }}\right)\)
    interval \(_{\text {start }}=\) intervalValGiven \(\left(\right.\) stmt \(_{\text {ts }}\), state \(\left._{\text {ts }}, f n_{\delta}\right)\)
            \(=\left(\right.\) stm \(_{t s} \Longleftrightarrow f n_{\delta}!=n\) Seconds \(\left._{\text {stmt }}\right) \vee\)
                        \(\left(\right.\) state \(\left._{t s} \Longleftrightarrow f n_{\delta}!=n S e c o n d s_{\text {state }}\right)\)
```

- return $s t m t_{t s}$ or $s t a t e_{t s}$, whichever one is further back in the past.

```
ReturnIntervalEnd[TIMESTAMP,TIMESTAMP]
```

\qquad

```
IntervalValGiven
    stmt \(_{t s}\), state \(_{\text {ts }}\), interval \(_{\text {end }}\) : TIMESTAMP
    \(f n_{\delta}!: \mathbb{N}\)
    \(f n_{\delta}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}\)
    returnIntervalEnd_ : TIMESTAMP \(\times\) TIMESTAMP \(\rightarrow\) TIMESTAMP
    returnIntervalEnd \(=\langle\) intervalValGiven_ \(\rangle\)
    \(f n_{\delta}!=f n_{\delta}\left(n S e c o n d s_{s t m t}, n S e c o n d s_{s t a t e}\right)\)
        \(=\left(n\right.\) Seconds \(s_{\text {stmt }} \Longleftrightarrow\) SSeconds \(_{\text {stm }} \geq n\) Seconds \(\left._{\text {state }}\right) \vee\)
        \(\left(n S e c o n d s_{\text {state }} \Longleftrightarrow n\right.\) Seconds \(\left.s_{\text {stmt }}<n S e c o n d s_{\text {state }}\right)\)
    interval \(_{\text {end }}=\) intervalValGiven \(\left(\right.\) stmt \(_{t s}\), state \(\left._{t s}, f n_{\delta}\right)\)
            \(=\left(\right.\) stmt \(_{t s} \Longleftrightarrow f n_{\delta}!=n\) Seconds \(\left.s_{\text {stmt }}\right) \vee\)
                        \(\left(\right.\) state \(_{t s} \Longleftrightarrow f n_{\delta}!=n\) Seconds \(\left.s_{\text {state }}\right)\)
```

- return $s t m t_{t s}$ or $s t a t e_{t s}$, whichever one is later on chronologically

```
_ ReturnUpdatedCount \([V]\)
    count? : V
    count! : \(\mathbb{N}\)
    returnUpdatedCount \({ }_{-}: V \rightarrow \mathbb{N}\)
    count \(!=\) returnUpdatedCount(count? )
        \(=(\) count \(?+1 \Longleftrightarrow\) count \(? \neq \emptyset) \vee\)
            \((1 \Longleftrightarrow(\) count \(?=0) \vee(\) count \(?=\emptyset))\)
```

- return an incremented value or 1 otherwise

```
_ ReturnUpdatedNames[Collection, STRING]
    names?, names! : Collection
    targetName : STRING
    returnUpdatedNames _ : Collection \(\times\) STRING \(\rightarrow\) Collection
    names? \(_{\text {targetName }}=\) names \(? 1\) target \(N a m e\)
    names \(!=\) returnUpdatedNames \((\) names?, target \(N a m e)\)
    \(=\left(\right.\) names \(?^{\wedge}\) targetName \(^{\Longleftrightarrow}\) names? \({ }_{\text {targetName }}=\emptyset \Rightarrow\) targetName \(\notin\) names? \() \vee\)
        (names? \(\Longleftrightarrow\) names? \({ }_{\text {targetName }} \neq\) emptyset \(\Rightarrow\) targetName \(\in\) names?)
```

- add targetName to the end of names? if targetName \notin names?

9.6.3 Formal Definition

The schema ProcessCompletionStatement is used to define the core functionality of RateOfCompletionsStep.step using the Primitive replaceAt to produce state!.

```
\(\Delta\) ProcessCompletionStatement \([S T\) ATEMENT, KV]
    ReplaceAt
    ParseCompletionStatement
    ResolvePreviousCompletionState
    ReturnIntervalStart
    ReturnIntervalEnd
    ReturnUpdatedCount
    ReturnUpdatedNames
    stmt? : ST ATEMENT
    state?, state!, state \({ }_{\text {objectId }}: K V\)
    processStatement_: STATEMENT \(\times K V \longrightarrow K V\)
    processStatement \(=\left\langle\left\langle\right.\right.\) parseStmt \({ }_{-}\), getPreviousState_ \(\rangle\),
        \(\left\langle\right.\) returnIntervalStart \({ }_{-}\), returnIntervalEnd \({ }_{-}\), replace \(\left.A t_{-}\right\rangle\),
        \(\left\langle\right.\) returnUpdatedCount \({ }_{-}\), replace \(\left.A_{-}\right\rangle\),
        \(\left\langle\right.\) returnUpdatedNames, , replace \(\left.\left.A_{-}\right\rangle\right\rangle\)
    parsed \(_{\text {stmt }}=\operatorname{parseStmt}(\) stmt \(?)\)
    stmt \(_{\text {timestamp }}=\operatorname{get}\left(\right.\) parsed \(_{\text {stmt? }}\), currentT \()\)
    \({s t m t_{o b j N a m e}}=\operatorname{get}\left(\right.\) parsed \(_{\text {stmt }}\), objName \()\)
    \({s t m t_{o b j I d}}=\operatorname{get}\left(\right.\) parsed \(_{\text {stmt }}\), objId \()\)
    state \(_{\text {objectId }}=\) getPreviousState \(\left(\right.\) state \(?\), parsed \(_{\text {stmt }}\) )
    interval \(_{\text {start }}=\operatorname{get} \operatorname{In}\left(\right.\) state \(_{\text {objectId }},\langle\) domain, start \(\left.\rangle\right)\)
    interval \(_{\text {end }}=\operatorname{getIn}\left(\right.\) state \(_{\text {objectId }},\langle\) domain, end \(\left.\rangle\right)\)
    state \(_{n S t m t s}=\operatorname{get}\left(\right.\) state \(_{\text {objectId }}, n\) Stmts \()\)
    state \(_{\text {names }}=\operatorname{get}\left(\right.\) state \(_{\text {objectId }}\), names \()\)
    interval \(_{\text {start }}!=\) returnIntervalStart stmt \(\left._{\left.\text {timestamp }, \text { interval }_{\text {start }}\right)}\right)\)
    interval \(_{\text {end }}!=\) returnIntervalEnd \(\left(\right.\) stmt \(_{\text {timestamp }}\), interval \(\left._{\text {end }}\right)\)
    interval \(!=\left\langle\left\langle\right.\right.\) start \(\mapsto\) interval \(_{\text {start }}!\), end \(\mapsto\) interval \(\left.\left._{\text {end }}!\right\rangle\right\rangle\)
    \(n S t m t s!=\) returnUpdatedCount \(\left(\right.\) state \(\left._{n S t m t s}\right)\)
    names \(!=\) returnUpdatedNames \(\left(\right.\) state \(_{\text {names }}\), stmt \(\left._{\text {objName }}\right)\)
    state \(!=\operatorname{processStatement}(\) stmt \(?\), state \(?)\)
    let interval \({ }_{\delta}==\) replaceAt(state?, \(\left\langle\right.\) roc, completions, stmt \({ }_{o b j I d}\), domain \(\rangle\), interval! )
        \(n S t m t_{\delta}==\) replaceAt \(^{(\text {interval }},\left\langle\right.\) roc, completions, stmt \(\left.\left._{\text {objId }}, n S t m t s\right\rangle, n S t m t s!\right)\)
        \(=\) replaceAt \(\left(n S t m t s_{\delta},\left\langle r o c\right.\right.\), completions, stmt \({ }_{\text {objId }}\), names \(\rangle\), names! \()\)
```

- update state! to include a mapping with Key stmt $_{\text {objId }}$ or update an existing mapping identified by stmt ${ }_{\text {objId }}$

The schema RateOfCompletionsStep introduces the alignment with Algorithm.step such that $\langle b o d y\rangle=$ processStatement as defined by ProcessCompletionStatement.

```
\(\Delta\) RateO fCompletionsStep \([K V, S T A T E M E N T]\)
Step
ProcessCompletionStatement
state?, state!: KV
stmt? : STATEMENT
step \(-K V \times S T A T E M E N T \rightarrow K V\)
    Step.step \(=\langle\) body \(\rangle\)
    step \(=\left\langle\right.\) processStatement \(\left.\_\right\rangle\)
    Step.step \(\leadsto\) step \(\Rightarrow\)
        \(\langle\) body \(\rangle \equiv\langle\langle\) parseStmt_, getPreviousState_ \(\rangle\),
        \(\left\langle\right.\) returnIntervalStart _, returnIntervalEnd, , replaceAt \(\left.t_{-}\right\rangle\),
        \(\langle\) returnUpdatedCount_, replaceAt_〉,
        \(\left\langle\right.\) returnUpdatedNames _ , replace \(\left.\left.A t_{-}\right\rangle\right\rangle\)
    state \(!=\operatorname{step}(\) state \(?\), stmt \(?)=\operatorname{processStatement(stmt} ?\), state \(?) \bullet\)
    state \(!\neq\) state \(? \wedge\)
    \(\operatorname{getIn}\left(\right.\) state!,\(\left\langle\right.\) roc, completions, stmt \(\left.\left._{\text {objId }}\right\rangle\right) \neq \emptyset\)
```

For each unique $s t m t_{o b j I d}$ passed to step, there should be a corresponding mapping in state ${ }_{\langle r o c, c o m p l e t i o n s\rangle}$ which looks like

$$
\begin{aligned}
& \text { stmt }_{\text {objId }} \mapsto\langle\langle\text { domain } \mapsto\langle\langle(\text { start }, \text { interval } \\
&\text { nStart } \left.\left.!),\left(\text { end }, \text { interval } l_{\text {end }}!\right)\right\rangle\right\rangle \\
& \text { names } \mapsto \text { namtmts }! \\
&\text { names }!\rangle
\end{aligned}
$$

9.7 Result

The interval of interval ${ }_{\text {start }}$! to interval ${ }_{\text {end }}$! can be partitioned based on the passed in opt named timeUnit such that for each unique $s t m t_{o b j I d}$, the metric n completions per time unit can be calculated and added to state $\left\langle_{\langle r o c, \text { completions,stmt }}^{\text {obj Id }, \text { rate }\rangle}\right.$.

```
_ RateOfCompletionsResult \([K V, K V]\)
Result
    Rate \(O f\)
    replaceAt
    opt?, state? , result!: KV
    result _ : \(K V \times K V \rightarrow K V\)
    Result.result \(=\langle\) body \(\rangle\)
    \(\langle\) body \(\rangle \sim\) result \(=\left\langle\right.\) replace \(\left.\left.A t_{-}\right\rangle\right\rangle^{\# \operatorname{dom}\left(\text { state }_{\langle\text {roc, completions }\rangle}\right)}\)
    state \(!=\operatorname{result}(\) state \(?\), opt \(?) \bullet\)
            let timeUnit \(==a t K e y(o p t ?\), timeUnit \()\)
        \(\forall s t m t_{o b j I d} \in\) state \(_{\langle\text {roc }, \text { completions }\rangle} \mid \exists_{1}\) state \(!_{o b j I d} \bullet\)
            let \(n O==\operatorname{getIn}\left(\right.\) state \(?,\left\langle r o c\right.\), completions, stmt \(\left.\left.{ }_{o b j I d}, n S t m t s\right\rangle\right)\)
                        start \(==\operatorname{getIn}\left(\right.\) state \(?,\left\langle\right.\) roc, completions, stmt \({ }_{\text {objId }}\), domain, start \(\left.\rangle\right)\)
            end \(==\operatorname{getIn}\left(\right.\) state \(?,\left\langle r o c\right.\), completions, stmt \({ }_{o b j I d}\), domain, end \(\left.\rangle\right)\)
            rate \({ }_{\text {objId }}==\) rateOf(nO, start, end, timeUnit)
        state \(!_{o b j I d}=\) replaceAt \(\left(\right.\) state \(?,\left\langle r o c\right.\), completions, stmt \(_{\text {objId }}\), rate \(\rangle\), rate \(\left._{\text {objId }}\right)\)
    \(=\sum\) state \(!_{\text {objId }} \bullet \forall s t m t_{\text {objId }} \mid\) getIn(state \(!,\left\langle r o c\right.\), completions, stmt \(_{\text {objId }}\), rate \(\left.\rangle\right) \in \mathbb{Z}\)
```

- state $!=\sum$ state $!_{o b j I d}$ is an alternative way to describe the aggregation of all changes made to state?.
- rate $O f$ performs the calculation which is used to update state? with consideration to opt?
- timeUnit will default to day if not specified within opt?

The output of rateOfCompletions is a state! which contains a mapping of following shape for each unique stmt $t_{\text {objId }}$ passed to rateOfCompletions, each of which can be found at the path $\left\langle r o c\right.$, completions, stmt $\left.t_{o b j I d}\right\rangle$.

$$
\begin{aligned}
\text { stmt }_{\text {objId }} \mapsto & \left\langle\left\langle\text { domain } \mapsto\left\langle\left\langle\left(\text { start }, \text { interval }_{\text {start }}!\right),\left(\text { end, interval } l_{\text {end }}!\right)\right\rangle\right\rangle\right.\right. \\
& \text { nStmts } \mapsto n S t m t s! \\
& \text { names } \mapsto \text { names }! \\
& \text { rate } \left.\left.\mapsto \text { rate }_{\text {objId }}\right\rangle\right\rangle
\end{aligned}
$$

Any mapping within this structure can be used within a corresponding visualization but the core piece of information the visualization should convey is rate objId .

9.8 Conclusion

This concludes the first example of a DAVE Algorithm formal definition. The conventions established within this section should be used across all DAVE Algorithm formal definitions in this document. If any aspect of this section requires further explanation or clarification, please post an issue to the DAVE github repo describing the issue or reach out to the Author(s) of this report via some other medium.

Appendix A: Visualization Exemplars

Appendix A includes a typology of data visualizations which may be supported within DAVE workbooks. These visualizations can either be one to one or one to many in regards to the algorithms defined within this document. Future iterations of this document will increasingly include these typologies within the domain-question template exemplars.

Line Charts

Figure 1: Line Chart

Figure 2: Line Chart with Error

Figure 3: Spline Chart

Figure 4: Quiver Chart

Grouping Charts

Figure 5: Grouped Line Charts

Figure 6: Histogram

Figure 7: Bar Chart

Figure 8: Bar Chart Grouped by Time Range

Figure 9: Scatter Plot

Figure 10: Polar Chart

Specialized Charts

Figure 11: Gantt Chart

Figure 12: Heat Map

Figure 13: 3D Plot

Figure 14: Gradient Plot

